Skip to main content
Log in

Development of NBS-related microsatellite (NRM) markers in hexaploid wheat

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

NBS (nucleotide binding site) genes, one type of the most important disease-resistance genes in the plant kingdom, are usually found clustered in genome. In this study, a total of 2288 full-length NBS protein-coding sequences were isolated from the wheat (Triticum aestivum L.) genome, and 903 TaNBSs of which were found expressed in wheat. Meanwhile, 2203 microsatellite loci were detected within 1061 scaffolds containing TaNBS. The distribution of these microsatellite loci across wheat homologous groups (HG) is 20% HG2, 16% HG7, 15% HG1, 15% HG6, 12% HG4, 12% HG5 and 10% HG3. We developed 1830 NBS-related microsatellite (NRM) markers for the microsatellite loci on TaNBS-scaffold sequences.Among them, 342 NRM markers were developed for HG2 with the largest number of microsatellite loci, and 69 out of these markers were anchored to the wheat genetic map using mapping population. Then, a total of 26 2AS-NRM markers, nine 2BL-NRM markers and nine 2DL-NRM markers were integrated into the genetic maps carrying Yr69, Pm51 and Pm43, respectively. Finally, candidate sequences, within the gene clusters where Yr5 and Sr21 located, were analyzed according to the genomic position information of TaNBS and NRM markers. These NRM markers have clear chromosome locations and are correlated with potential disease resistance sequences, which can be manipulated to mapping or adding linkage markers of disease-resistance genes or QTLs, especially for those in the NBS gene clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bansal M, Kaur S, Dhaliwal HS, Bains NS, Bariana HS, Chhuneja P, Bansal UK (2017) Mapping of Aegilops umbellulata-derived leaf rust and stripe rust resistance loci in wheat. Plant Pathol 66(1):38–44. doi:10.1111/ppa.12549

    Article  CAS  Google Scholar 

  • Bouktila D, Habachi-Houimli Y, Khalfallah Y, Mezghani-Khemakhem M, Makni M, Makni H (2014) Characterization of novel wheat NBS domain-containing sequences and their utilization, in silico, for genome-scale R-gene mining. Mol Genet Genom 289(4):599–613. doi:10.1007/s00438-014-0834-4

    Article  CAS  Google Scholar 

  • Bouktila D, Khalfallah Y, Habachi Y, Mezghani M, Makni M, Makni H (2015) Full-genome identification and characterization of NBS-encoding disease resistance genes in wheat. Mol Genet Genom 290:257–271. doi:10.1007/s00438-014-0909-2

    Article  CAS  Google Scholar 

  • Chen XM, Line RF (1995) Gene-action in wheat cultivars for durable, high-temperature, adult-plant resistance and interaction with race-specific, seedling resistance to Puccinia striiformis. Phytopathology 85:567–572

    Article  Google Scholar 

  • Chen S, Rouse MN, Zhang W, Jin Y, Akhunov E, Wei Y, Dubcovsky J (2015) Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor Appl Genet 128(4):645–656. doi:10.1007/s00122-015-2460-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Jiang H, Zhao Y, Qian Y, Zhu S, Cheng B (2010) A genomic analysis of disease-resistance genes encoding nucleotide binding sites in Sorghum bicolor. Genet Mol Biol 33(2):292–297. doi:10.1590/S1415-47572010005000036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Li X, Jiang H, Ma W, Miao W, Yamada T, Zhang M (2012) Systematic analysis and comparison of nucleotide-binding site disease resistance genes in maize. FEBS J 279(13):2431–2443. doi:10.1111/j.1742-4658.2012.08621.x

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feuillet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65:93–106. doi:10.1007/s11103-007-9201-8

    Article  CAS  PubMed  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846. doi:10.1038/nrg1711

    Article  CAS  PubMed  Google Scholar 

  • Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy PD, Beynon J, Marco Y (2002) Resistance to Ralstonias olanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409. doi:10.1073/pnas.032485099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, Da Silva C, Jabbari K, Cardi C, Poulain J, Souquet M, Labadie K, Jourda C, Lengellé J, Rodier-Goud M, Alberti A, Bernard M, Correa M, Ayyampalayam S, Mckain MR, Leebens-Mack J, Burgess D, Freeling M, Mbéguié-A-Mbéguié D, Chabannes M, Wicker T, Panaud O, Barbosa J, Hribova E, Heslop-Harrison P, Habas R, Rivallan R, Francois P, Poiron C, Kilian A, Burthia D, Jenny C, Bakry F, Brown S, Guignon V, Kema G, Dita M, Waalwijk C, Joseph S, Dievart A, Jaillon O, Leclercq J, Argout X, Lyons E, Almeida A, Jeridi M, Dolezel J, Roux N, Risterucci AM, Weissenbach J, Ruiz M, Glaszmann JC, Quétier F, Yahiaoui N, Wincker P (2012) The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488(7410):213–217. doi:10.1038/nature11241

    Article  PubMed  Google Scholar 

  • Elmore JM, Lin ZJ, Coaker G (2011) Plant NB-LRR signaling: Upstreams and downstreams. Curr Opin Plant Biol 14:365–371. doi:10.1016/j.pbi.2011.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong C, Cao S, Fan R, Wei B, Chen G, Wang X, Li Y, Zhang X (2013) Identification and phylogenetic analysis of a CC-NBS-LRR encoding gene assigned on chromosome 7B of wheat. Int J Mol Sci 14(8):15330–15347. doi:10.3390/ijms140815330

    Article  PubMed  PubMed Central  Google Scholar 

  • Goutam U, Kukreja S, Yadav R, Salaria N, Thakur K, Goyal AK (2015) Recent trends and perspectives of molecular markers against fungal diseases in wheat. Front Microbiol 6:861. doi:10.3389/fmicb.2015.00861

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu L, Si W, Zhao L, Yang S, Zhang X (2015) Dynamic evolution of NBS-LRR genes in bread wheat and its progenitors. Mol Genet Genom 290(2):727–738. doi:10.1007/s00438-014-0948-8

    Article  CAS  Google Scholar 

  • Guo Q, Zhang ZJ, Xu YB, Li GH, Feng J, Zhou Y (2008) Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f. sp. tritici in wheat cultivars. Phytopathology 98(7):803–809. doi:10.1094/PHYTO-98-7-0803

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Bai P, Yang Q, Liu F, Wang X, Huang L, Kang Z (2013) Wheat zinc finger protein TaLSD1, a negative regulator of programmed cell death, is involved in wheat resistance against stripe rust fungus. Plant Physiol Biochem 71:164–172. doi:10.1016/j.plaphy.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  • Halterman D, Zhou F, Wei F, Wise RP, Schulze-Lefert P (2001) The MLA6 coiled-coil, NBS-LRR protein confers AvrMla6-dependent resistance specificity to Blumeria graminis f. sp. hordei in barley and wheat. Plant J 25(3):335–348. doi:10.1046/j.1365-313x.2001.00982.x

    Article  CAS  PubMed  Google Scholar 

  • Halterman DA, Wei F, Wise RP (2003) Powdery mildew-induced Mla mRNAs are alternatively spliced and contain multiple upstream open reading frames. Plant Physiol 131(2):558–567. doi:10.1104/pp.014407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118(6):1173–1180. doi:10.1007/s00122-009-0971-z

    Article  CAS  PubMed  Google Scholar 

  • He HG, Zhu SY, Ji YY, Jiang ZN, Zhao RH, Bie TD (2017) Map-based cloning of the gene Pm21 that confers broad spectrum resistance to wheat powdery mildew. arXiv 1708.05475. doi:https://arxiv.org/abs/1708.05475

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    Article  CAS  Google Scholar 

  • Hou LY, Jia JQ, Zhang XJ, Li X, Yang ZJ, Jian Ma, Guo HJ, Zhan HX, Qiao LY, Chang ZJ (2016) Molecular mapping of the stripe rust resistance gene Yr69 on wheat chromosome 2AS. Plant Dis 100(8):1717–1724. doi:10.1094/PDIS-05-15-0555-RE

    Article  CAS  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D, McIntosh RA, Keller B (2014) The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J 79(6):904–913. doi:10.1111/tpj.12593

    Article  CAS  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788. doi:10.1126/science.1251788

    Article  Google Scholar 

  • Jordan T, Seeholzer S, Schwizer S, Töller A, Somssich IE, Keller B (2011) The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant J 65(4):610–621. doi:10.1111/j.1365-313X.2010.04445.x

    Article  CAS  PubMed  Google Scholar 

  • Jupe F, Pritchard L, Etherington GJ, Mackenzie K, Cock PJ, Wright F, Sharma SK, Bolser D, Bryan GJ, Jones JD, Hein I (2012) Identification and localisation of the NB-LRR gene family within the potato genome. BMC Genom 13:75. doi:10.1186/1471-2164-13-75

    Article  CAS  Google Scholar 

  • Krattinger SG, Keller B (2016) Molecular genetics and evolution of disease resistance in cereals. New Phytol 212(2):320–332. doi:10.1111/nph.14097

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Espino JH, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363. doi:10.1126/science.1166453

    Article  CAS  PubMed  Google Scholar 

  • Lan CX, Ni XW, Yan J, Zhang Y, Xia XC, Chen XM, He ZH (2010) Quantitative trait loci mapping of adult-plant resistance to powdery mildew in Chinese wheat cultivar Lumai 21. Mol Breed 25:615–622. doi:10.1007/s11032-009-9358-8

    Article  CAS  Google Scholar 

  • Lee HA, Yeom SI (2015) Plant NB-LRR proteins: Tightly regulated sensors in a complex manner. Brief Funct Genom 14:233–242. doi:10.1093/bfgp/elv012

    Article  Google Scholar 

  • Li Q, Wan JM (2005) SSRHunter: development of a local searching software for SSR sites. Hereditas (Beijing) 27(5):808–810 [Article in Chinese]

    Google Scholar 

  • Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C, Chen W, Liang X, Shang H, Liu W, Shi C, Xiao G, Gou C, Ye W, Xu X, Zhang X, Wei H, Li Z, Zhang G, Wang J, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu S (2014) Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46(6):567–572. doi:10.1038/ng.2987

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Frick M, Huel R, Nykiforuk CL, Wang X, Gaudet DA, Eudes F, Conner RL, Kuzyk A, Chen Q, Kang Z, Laroche A (2014) The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant 7:1740–1755. doi:10.1093/mp/ssu112

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Qiao L, Zhang X, Li X, Zhan HX, Guo HJ, Zheng J, Chang ZJ (2017) Genome-wide identification and resistance expression analysis of the NBS gene family in Triticum urartu. Genes Genom 39:611–621. doi:10.1007/s13258-017-0526-7

    Article  CAS  Google Scholar 

  • Ma QH, Zhen WB, Liu YC (2013) Jacalin domain in wheat jasmonate-regulated protein Ta-JA1 confers agglutinating activity and pathogen resistance. Biochimie 95:359–365. doi:10.1016/j.biochi

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Zhang P, Vautrin S, Šimková H, Bansal U, Luo MC, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y, Ayliffe MA, Bariana H, Park RF, McIntosh R, Doležel J, Bergès H, Spielmeyer W, Lagudah ES, Ellis JG, Dodds PN (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants 1:15186. doi:10.1038/nplants.2015.186

    Article  CAS  PubMed  Google Scholar 

  • Marone D, Russo MA, Laidò G, De Vita P, Papa R, Blanco A, Gadaleta A, Rubiales D, Mastrangelo AM (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genom 14:562. doi:10.1186/1471-2164-14-562

    Article  CAS  Google Scholar 

  • McGrann GRD, Smith PH, Burt C, Mateos GR, Chama TN, MacCormack R, Wessels E, Agenbag G, Boyd LA (2014) Genomic and genetic analysis of the wheat race-specific yellow rust resistance gene Yr5. J Plant Sci Mol Breed 3:2. doi:10.7243/2050-2389-3-2

    Article  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834. doi:10.1105/tpc.009308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry J, Finn RD, Eddy SR, Bateman A, Punta M (2013) Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res 41(12):e121. doi:10.1093/nar/gkt263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morata J, Puigdomènech P (2017) Variability among Cucurbitaceae species (melon, cucumber and watermelon) in a genomic region containing a cluster of NBS-LRR genes. BMC Genom 18(1):138. doi:10.1186/s12864-017-3529-5

    Article  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462. doi:10.1016/j.cell.2007.10.022

    Article  CAS  PubMed  Google Scholar 

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R, McIntosh R, Dodds P, Dvorak J, Lagudah E (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341:786–788. doi:10.1126/science.1239028

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer M, Kugler KG, Sandve SR, Zhan B, Rudi H, Hvidsten TR, International Wheat Genome Sequencing Consortium, Mayer KF, Olsen OA (2014) Genome interplay in the grain transcriptome of hexaploid bread wheat. Science 345:1250091. doi:10.1126/science.1250091

    Article  PubMed  Google Scholar 

  • Rachel B, Manuel S, Matthias P, Gary LAB, Rosalinda DA, Alexandra MA, Neil M, Melissa K, Arnaud K, Dan B, Suzanne K, Darren W, Martin T, Ian B, Gu Y, Huo NX, Luo MC, Sunish S, Bikram G, Sharyar K, Olin A, Paul K, Jan D, Richard M, Anthony H, Klaus FM, Keith JE, Michael WB, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710. doi:10.1038/nature11650

    Article  Google Scholar 

  • Rahmatov M, Rouse MN, Nirmala J, Danilova T, Friebe B, Steffenson BJ, Johansson E (2016) A new 2DS 2RL Robertsonian translocation transfers stem rust resistance gene Sr59 into wheat. Theor Appl Genet 129(7):1383–1392. doi:10.1007/s00122-016-2710-6

    Article  CAS  PubMed  Google Scholar 

  • Rouse MN, Nava IC, Chao S, Anderson JA, Jin Y (2012) Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theor Appl Genet 125(5):877–885. doi:10.1007/s00122-012-1879-6

    Article  PubMed  Google Scholar 

  • Saintenac C, Zhang W, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786. doi:10.1126/science.1239028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salse J, Bolot S, Throude M, Jouffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20(1):11–24. doi:10.1105/tpc.107.056309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BB (2016) Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol 17(1):221. doi:10.1186/s13059-016-1082-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Sela H, Spiridon LN, Petrescu AJ, Akerman M, Mandel-Gutfreund Y, Nevo E, Loutre C, Keller B, Schulman AH, Fahima T (2012) Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Triticum dicoccoides) LR10 coiled coil (CC) and leucine-rich repeat (LRR) domains. Mol Plant Pathol 13:276–287. doi:10.1111/j.1364-3703.2011.00744.x

    Article  CAS  PubMed  Google Scholar 

  • Shao ZQ, Xue JY, Wu P, Zhang YM, Wu Y, Hang YY, Wang B, Chen JQ (2016) Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol 170(4):2095–2109. doi:10.1104/pp.15.01487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Pallavi JK, Gupta P, Prabhu KV (2011) Identification of microsatellite markers linked to leaf rust adult plant resistance (APR) gene Lr48 in wheat. Plant Breed 130(1):31–34. doi:10.1111/j.1439-0523.2010.01820.x

    Article  CAS  Google Scholar 

  • Smith PH, Hadfield J, Hart NJ, Koebner RM, Boyd LA (2007) STS markers for the wheat yellow rust resistance gene Yr5 suggest a NBS-LRR-type resistance gene cluster. Genome 50:259–265. doi:10.1139/g07-004

    Article  CAS  PubMed  Google Scholar 

  • Steuernagel B, Periyannan SK, Hernández-Pinzón I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JD, Lagudah ES, Wulff BB (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34(6):652–655. doi:10.1038/nbt.3543

    Article  CAS  PubMed  Google Scholar 

  • Thind AK, Wicker T, Šimková H, Fossati D, Moullet O, Brabant C, Vrána J, Doležel J, Krattinger SG (2017) Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly. Nat Biotechnol. doi:10.1038/nbt.3877 Published online

    PubMed  Google Scholar 

  • Tommasini L, Yahiaoui N, Srichumpa P, Keller B (2006) Development of functional markers specific for seven Pm3 resistance alleles and their validation in the bread wheat gene pool. TheorAppl Genet 114:165–175. doi:10.1007/s00122-006-0420-1

    Article  CAS  Google Scholar 

  • Tsilo TJ, Jin Y, Anderson JA (2007) Microsatellite markers linked to stem rust resistance allele Sr9a in wheat. Crop Sci 47:2013–2020. doi:10.2135/cropsci2007.02.0087

    Article  CAS  Google Scholar 

  • Tsilo TJ, Jin Y, Anderson JA (2010) Identification of flanking markers for the stem rust resistance gene Sr6 in wheat. Crop Sci 50:1967–1970. doi:10.2135/cropsci2009.11.0648

    Article  CAS  Google Scholar 

  • Urbach JM, Ausubel FM (2017) The NBS-LRR architectures of plant R-proteins and metazoan NLRs evolved in independent events. Proc Natl Acad Sci USA 114(5):1063–1068. doi:10.1073/pnas.1619730114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Wang X, Mei Y, Dong H (2016) The wheat homolog of putative nucleotide-binding site-leucine-rich repeat resistance gene TaRGA contributes to resistance against powdery mildew. Funct Integr Genom 16(2):115–126. doi:10.1007/s10142-015-0471-y

    Article  Google Scholar 

  • Wiersma AT, Pulman JA, Brown LK, Cowger C, Olson EL (2017) Identification of Pm58 from Aegilops tauschii. Theor Appl Genet 130(6):1123–1133. doi:10.1007/s00122-017-2874-8

    Article  CAS  PubMed  Google Scholar 

  • Xiang C, Feng JY, Wang MN, Chen XM, See DR, Wan AM, Wang T (2016) Molecular mapping of stripe rust resistance gene Yr76 in winter club wheat cultivar Tyee. Phytopathology 106(10):1186–1193

    Article  CAS  PubMed  Google Scholar 

  • Xing LP, Hu P, Liu JQ, Cui CF, Wang H, Di ZC, Zhou S, Xu JF, Gao L, Huang ZP, Cao AZ (2017) NLR1-V, a CC-NBS-LRR encoding gene, is a potential candidate gene of the wheat powdery mildew resistance gene Pm21. bioRxiv. doi:10.1101/114058

    Google Scholar 

  • Yahiaoui N, Srichumpa P, Dudler R, Keller B (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538. doi:10.1046/j.1365-313X.2003.01977.x

    Article  CAS  PubMed  Google Scholar 

  • Zhan H, Li G, Zhang X, Li X, Guo H, Gong W, Jia J, Qiao L, Ren Y, Yang Z, Chang Z (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS ONE 9(11):e113455. doi:10.1371/journal.pone.0113455

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou F, Kurth J, Wei F, Elliott C, Valè G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a Rar1-independent signaling pathway. Plant Cell 13(2):337–350. doi:10.1105/tpc.13.2.337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Wang Y, Chen JQ, Araki H, Jing Z, Jiang K, Shen J, Tian D (2004) Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR-NBS-LRR genes. Mol Genet Genomics 271(4):402–415. doi:10.1007/s00438-004-0990-z

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Plan of China (2016YFD0102004-07) and the Shanxi Province Science Foundation for Youths (2015021145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zheng or Zhijian Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Zhang, X., Li, X. et al. Development of NBS-related microsatellite (NRM) markers in hexaploid wheat. Euphytica 213, 256 (2017). https://doi.org/10.1007/s10681-017-2039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-2039-5

Keywords

Navigation