Skip to main content
Log in

Comparative genetic variation of fiber quality traits in reciprocal advanced backcross populations

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Introgressive breeding to introduce both obvious variation into a gene pool, and to unmask cryptic variation masked by close linkage or epistatic interactions, has repeatedly been attempted to improve fiber traits in Gossypium hirsutum by employing Gossypium barbadense as a donor parent. This study reports genetic variation for fiber quality traits in reciprocal advanced backcross populations between G. hirsutum cultivar Acala Maxxa and G. barbadense cultivar Pima S6. Micronaire (MIC), elongation (ELO), strength (STR), upper half mean length (UHM), and uniformity index (UI) showed significant genotypic variance, albeit different in the respective backgrounds for all traits except UI. Different levels of variation among genotypes for the same traits in reciprocal backgrounds suggest different levels of epistatic interactions, a hypothesis supported by a significant difference in transgressive segregants in Acala Maxxa and Pima S6 backgrounds. In Acala Maxxa background, 18, 18, 7, and 3 genotypes had significantly better MIC, ELO, STR and UHM, respectively, than Acala Maxxa. In Pima S6 background 10, 5, 8, and 11 genotypes had significantly better MIC, ELO, STR, and UHM, respectively, than Pima S6. Increased genetic variation and improved fiber quality in both backgrounds appears attainable using reciprocal introgression; however, the number of genotypes with simultaneous improvement for multiple fiber quality traits was higher in Acala Maxxa than Pima S6 background. Reciprocal populations provide a platform to study cytoplasmic effects on genetic variation and heritability of fiber quality traits, and estimate the size of base populations required to obtain genotypes with genetic gain by backcross breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowman DT (2000) Attributes of public and private cotton breeding programs. J Cotton Sci 4:130–136

    Google Scholar 

  • Cantrell R, Davis D (2000) Registration of NM24016, an interspecific-derived cotton genetic stock. Crop Sci 40:1208

    Article  Google Scholar 

  • Cantrell R, Roberts C, Waddell C (2000) Registration ofAcala 1517-99′Cotton. Crop Sci 40:1200

    Article  Google Scholar 

  • Davis DD (1978) Hybrid cotton: specific problems and potentials. Adv Agron 30:129–157

    Article  Google Scholar 

  • D’Halluin K et al (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 11:933–941

    Article  PubMed  PubMed Central  Google Scholar 

  • Fryxell PA, Craven LA, McD J (1992) A revision of Gossypium sect. Grandicalyx (Malvaceae), including the description of six new species. Syst Bot 17:91–114

    Article  Google Scholar 

  • Gore MA, Percy RG, Zhang J, Fang DD, Cantrell RG (2012) Registration of the TM-1/NM24016 cotton recombinant inbred mapping population. J Plant Regist 6:124–127

    Article  Google Scholar 

  • Jiang CX, Chee PW, Draye X, Morrell PL, Smith CW, Paterson AH (2000) Multilocus interactions restrict gene introgression in interspecific populations of polyploid Gossypium (cotton). Evolution 54:798–814

    Article  CAS  PubMed  Google Scholar 

  • Lacape J-M, Nguyen T (2005) Mapping quantitative trait loci associated with leaf and stem pubescence in cotton. J Hered 96:441–444

    Article  CAS  PubMed  Google Scholar 

  • Lacape J-M et al (2005) QTL analysis of cotton fiber quality using multiple backcross generations. Crop Sci 45:123–140

    Article  CAS  Google Scholar 

  • May OL (1996) Genetic variation in fiber quality. Florence, USDA-ARS, Pee Dee Research and Education Center

    Google Scholar 

  • May OL, Bowman DT, Calhoun DS (1995) Genetic diversity of US upland cotton cultivars released between 1980 and 1990. Crop Sci 35:1570–1574

    Article  Google Scholar 

  • Meredith WR, Bridge R (1971) Breakup of linkage blocks in cotton, Gossypium hirsutum L. Crop Sci 11:695–698

    Article  Google Scholar 

  • Moser CWSH, Oakley RGCSR (1999) History of cultivar development in the United States. Cotton 4:99

    Google Scholar 

  • Patel JD et al (2014) Alleles conferring improved fiber quality from EMS mutagenesis of elite cotton genotypes. Theor Appl Genet 127:821–830

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  PubMed  Google Scholar 

  • Percy R (2001) Registration of PS-6ne, PS-6L [degrees], PS-6neL [degrees], P62ne, P62L [degrees], and P62neL [degrees] extra-long staple cotton germplasm. Crop Sci 41:602

    Article  Google Scholar 

  • Percy R (2002) Registration of five extra-long staple cotton germplasm lines possessing superior fiber length and strength. (Registrations of germplasm). Crop Sci 42:988–989

    Article  Google Scholar 

  • Percy RG (2009) The worldwide gene pool of Gossypium barbadense L. and its improvement. In: Paterson Andrew H (ed) Genetics and genomics of cotton. Springer, New York, pp 53–68

    Chapter  Google Scholar 

  • Percy R, Turcotte E (1997) Registration of 10 Pima cotton germplasm lines, P70–P79. Crop Sci 37:632–633

    Article  Google Scholar 

  • Percy R, Turcotte E (1998) Registration of extra-long staple cotton germplasm, 89590 and 8810. Crop Sci 38:1409

    Article  Google Scholar 

  • Percy R, Wendel JF (1990) Allozyme evidence for the origin and diversification of Gossypium barbadense L. Theor Appl Genet 79:529–542

    Article  CAS  PubMed  Google Scholar 

  • Percy RG, Cantrell RG, Zhang J (2006) Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Sci 46:1311–1317

    Article  Google Scholar 

  • Pro J (2012) v10 Cary. SAS, NC

    Google Scholar 

  • Saha S, Wu J, Jenkins J, McCarty J, Hayes R, Stelly D (2011) Delineation of interspecific epistasis on fiber quality traits in Gossypium hirsutum by ADAA analysis of intermated G. barbadense chromosome substitution lines. Theor Appl Genet 122:1351–1361

    Article  CAS  PubMed  Google Scholar 

  • SAS S (2011) for Windows Version 9.3 SAS Institute Inc, Cary, NC, USA

  • Shen X, Guo W, Lu Q, Zhu X, Yuan Y, Zhang T (2007) Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton. Euphytica 155:371–380

    Article  CAS  Google Scholar 

  • Smith CW (1978) Bayes least significant difference: a review and comparison. Agron J 70:123–127

    Article  Google Scholar 

  • Smith CW, Coyle GG (1997) Association of fiber quality parameters and within-boll yield components in upland cotton. Crop Sci 37:1775–1779

    Article  Google Scholar 

  • Stelly D, Saha S, Raska D, Jenkins J, McCarty J Jr, Gutierrez O (2005) Registration of 17 upland (Gossypium hirsutum) cotton germplasm lines disomic for different G. barbadense chromosome or arm substitutions. Crop Sci 45:2663–2666

    Article  Google Scholar 

  • Tanksley S, Nelson J (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  CAS  PubMed  Google Scholar 

  • Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V (2014) Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127:283–295

    Article  PubMed  Google Scholar 

  • Waghmare VN et al (2016) Comparative transmission genetics of introgressed chromatin in Gossypium (cotton) polyploids. Am J Bot 103:719–729

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Dong J, Paterson A (1995) The distribution of Gossypium hirsutum chromatin in G. barbadense germ plasm: molecular analysis of introgressive plant breeding. Theor Appl Genet 91:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Wang B et al (2017) QTL analysis of cotton fiber length in advanced backcross populations derived from a cross between G. hirsutum and G. mustelinum. Theor Appl Genet 130:1–12

    Article  Google Scholar 

  • Wright S (1968) Evolution and the genetics of populations. Vol. 1. Genetic and biométrie foundations

  • Zhang Z et al (2011) QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum. Theor Appl Genet 123:1075–1088

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We sincerely thank the National Science Foundation for financial support. We further thank the members of the Plant Genome Mapping Lab and Molecular Cotton Breeding Lab for help in lab and field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Paterson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandnani, R., Zhang, Z., Patel, J.D. et al. Comparative genetic variation of fiber quality traits in reciprocal advanced backcross populations. Euphytica 213, 241 (2017). https://doi.org/10.1007/s10681-017-2029-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-2029-7

Keywords

Navigation