Skip to main content
Log in

QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Seventeen backcross-self families from crosses between two Gossypium hirsutum recurrent parent lines (CA3084, CA3093) and G. tomentosum were used to identify quantitative trait loci (QTLs) controlling fiber quality traits. A total of 28 QTLs for fiber quality traits were identified (P < 0.001), including four for fiber elongation, eight for fiber fineness, four for fiber length, four for fiber strength, six for fiber uniformity, one for boll weight, and one for boll number. Three statistically significant marker–trait associations for lint yield were found in a single environment, but need further validation. Two-way analysis of variance revealed one locus with significant genotype × family interaction (P < 0.001) for fiber strength and a second locus with significant genotype × environment interaction (P < 0.001) in the CA3084 background, and two loci with significant genotype × background interaction (P < 0.001) for the 28 common markers segregating in both of the two recurrent backgrounds. Co-location of many QTLs for fiber quality traits partially explained correlations among these traits. Some G. tomentosum alleles were associated with multiple favorable effects, offering the possibility of rapid genetic gain by introgression. Many G. tomentosum alleles were recalcitrant to homozygosity, suggesting that they might be most effectively deployed in hybrid cottons. DNA markers linked to G. tomentosum QTLs identified in the present study promise to assist breeders in transferring and maintaining valuable traits from this exotic source during Upland cotton cultivar development. This study also adds further evidence to prior studies indicating that the majority of genetic variation associated with fiber quality in tetraploid cotton traces to the D-subgenome from a diploid ancestor that does not produce spinnable fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abdalla AM, Reddy OUK, El-Zik KM, Pepper AE (2001) Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet 102:222–229

    Article  CAS  Google Scholar 

  • Alford BB, Liepa GU, Vanbeber AD (1996) Cottonseed protein: what does the future hold? Plant Food Hum Nutr 49:1–11

    Article  CAS  Google Scholar 

  • Beasley JO (1940) The production of polyploids in Gossypium. J Hered 31:39–48

    CAS  Google Scholar 

  • Beasley JO (1942) Meiotic chromosome behaviour in species, species hybrids, haploids and induced polyploids of Gossypium. Genetics 27:25–54

    PubMed  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S (1998) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180

    Article  CAS  Google Scholar 

  • Brubaker CL, Wendel JF (1994) Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am J Bot 81:1309–1326

    Article  Google Scholar 

  • Brubaker CL, Koontz JA, Wendel JF (1993) Bidirectional cytoplasmic and nuclear introgression in the New World cottons, Gossypium barbadense and G. hirsutum (Malvaceae). Am J Bot 80:1203–1208

    Article  Google Scholar 

  • Cantrell RD, Davis DD (1993) Characterization of G. hirsutum × G. barbadebse breeding lines using molecular markers. Proc Beltwide Production Conf. pp 1551–1553

  • Chee P, Draye X, Jiang C, Decanini L, Delmonte T, Bredhauer B, Smith CW, Paterson AH (2005a) Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach: I. Fiber elongation. Theor Appl Genet 111:757–763

    Article  PubMed  CAS  Google Scholar 

  • Chee P, Draye X, Jiang CX, Decanini L, Delmonte T, Bredhauer R, Smith CW, Paterson AH (2005b) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: III. Fiber length. Theor Appl Genet 111:772–781

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ, Scheffler BE, Dennis E, Triplett BA, Zhang TZ, Guo WZ, Chen XY, Stelly DM, Rabinowicz PD, Town CD, Arioli T, Brubaker C, Cantrell RG, Lacape JM, Ulloa M, Chee P, Gingle AR, Haigler CH, Percy R, Saha S, Wilkins T, Wright RJ, Deynze AV, Zhu YX, Yu SX, Abdurakhmonov I, Katageri I, Kumar PA, Rahman M, Zafar Y, Yu JZ, Kohel RJ, Wendel JF, Paterson AH (2007) Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Cherry JP, Leffler HR (1984) Seed. In: Kohel RJ, Lewis CF (eds) Cotton. ASA, Madison, Wisconsin, pp 511–569

    Google Scholar 

  • Culp TW, Harrell DC, Kerr T (1979) Some genetic implications in the transfer of high fiber strength genes to Upland cotton. Crop Sci 19:481–484

    Article  Google Scholar 

  • Draye X, Chee P, Jiang CX, Decanini L, Delmonte T, Bredhauer R, Smith CW, Paterson AH (2005) Molecular dissection of interspecific variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach: II. Fiber fineness. Theor Appl Genet 111:764–771

    Article  PubMed  CAS  Google Scholar 

  • Fryxell PA (1979) The natural history of the cotton tribe. Texas A and M University Press, College Station, TX

    Google Scholar 

  • Fryxell PA, Craven LA, Stewart J McD (1992) A revision of Gossypium sect. Grandicalyx (Malvaceae), including the description of six new species. Syst Bot 17:91–114

    Article  Google Scholar 

  • Guo WZ, Zhang TZ, Pan JJ, Wang XY (1997) A preliminary study on genetic diversity of Upland cotton cultivars in China. Acta Gossypii Sinica 9:242–247

    Google Scholar 

  • Iqbal MJ, Aziz N, Saeed NA, Zafar Y, Malik KA (1997) Genetic diversity evaluation of some elite cotton varieties by RAPD analysis. Theor Appl Genet 95:139–144

    Article  Google Scholar 

  • Iqbal MJ, Reddy OUK, El-Zik KM, Pepper AE (2001) A genetic bottleneck in the ‘evolution under domestication’of Upland cotton Gossypium hirsutum L. examined using DNA fingerprinting. Theor Appl Genet 103:547–554

    Article  CAS  Google Scholar 

  • Jiang C, Wright R, El-Zik K, Paterson AH (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Nat Acad Sci USA 95:4419–4424

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Chee P, Draye X, Morrell P, Smith C, Paterson A (2000) Multi-locus interactions restrict gene flow in advanced-generation interspecific populations of polyploid Gossypium (Cotton). Evolution 54:798–814

    PubMed  CAS  Google Scholar 

  • Khan SA, Hussain D, Askari E, Stewart JM, Malik KA, Zafar Y (2000) Molecular phylogeny of Gossypium species by DNA fingerprinting. Theor Appl Genet 101:931–938

    Article  CAS  Google Scholar 

  • Lacape JM, Nguyen TB, Courtois B, Belot JL, Giband M, Gourlot JP, Gawryziak G, Roques S, Hau B (2005) QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generations. Crop Sci 45:123–140

    CAS  Google Scholar 

  • Lacape JM, Dessauw D, Rajab M, Noyer JL, Hau B (2007) Microsatellite diversity in tetraploid Gossypium germplasm: assembling a highly informative genotyping set of cotton SSRs. Mol Breeding 19:45–58

    Article  CAS  Google Scholar 

  • Lecomte L, Duffe P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  PubMed  CAS  Google Scholar 

  • Linos AA, Bebeli PJ, Kaltsikes PJ (2002) Cultivar identification in Upland cotton using RAPD markers. Aust J Agric Res 53:637–642

    Article  Google Scholar 

  • Lu HJ, Myers GO (2002) Genetic relationships and discrimination of ten influential Upland cotton varieties using RAPD markers. Theor Appl Genet 105:325–331

    Article  PubMed  CAS  Google Scholar 

  • Lusas EW, Jividen GM (1987) Glandless cottonseed: a review of the first 25 years of processing and utilization research. J Am Oil Chem Soc 64:839–854

    Article  CAS  Google Scholar 

  • McCouch SR, Cho YG, Yano PE, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newslett 14:11–13

    Google Scholar 

  • Multani DS, Lyon BR (1995) Genetic fingerprinting of Australian cotton cultivars with RAPD markers. Genome 38:1005–1008

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, DeVerna J, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, from an interspecies cross of tomato. Genetics 124:735–742

    PubMed  CAS  Google Scholar 

  • Paterson AH, Saranga Y, Menz M, Jiang C, Wright RJ (2003) QTL analysis of genotype × environmental interactions affecting cotton fiber quality. Theor Appl Genet 106:384–396

    PubMed  CAS  Google Scholar 

  • Percival AE, Kohel RJ (1990) Distribution, collection, and evaluation of Gossypium. Adv Agronomy 44:225–256

    Article  Google Scholar 

  • Percival AE, Wendel JF, Stewart JM (1999) Taxonomy and germplasm resources. In: Smith CW, Cothren JT (eds) Cotton origin, history, technology, and production. John Wiley and Sons Inc., New York, pp 33–63

    Google Scholar 

  • Percy RG, Wendel JF (1990) Allozyme evidence for the origin and diversification of Gossypium barbadense L. Thero Appl Genet 79:529–542

    Google Scholar 

  • Rong J, Feltus FA, Waghmare VN, Pierce GJ, Chee PW, Draye X, Saranga Y, Wright RJ, Wilkins TA, May OL, Smith CW, Gannaway JR, Wendel JF, Paterson AH (2007) Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176:2577–2588

    Article  PubMed  CAS  Google Scholar 

  • Rungis D, Llewellyn D, Dennis ES, Lyon BR (2005) Simple sequence repeat (SSR) markers reveal low levels of polymorphism between cotton (Gossypium hirsutum L.) cultivars. Aus J Agr Res 56:301–307

    Article  CAS  Google Scholar 

  • Saha S, Wu J, Jenkins JN, Mccarty JC, Gutie′rrez OA, Stelly DM, Percy RG, Raska DA (2004) Effect of chromosome substitutions from Gossypium barbadense L. 3–79 into G. hirsutum L. TM-1 on agronomic and fiber traits. J Cotton Sci 8:162–169

    CAS  Google Scholar 

  • Saha S, Jenkins JN, Wu J, Mccarty JC, Gutie′rrez OA, Percy RG, Cantrell RG, Stelly DM (2006) Effects of chromosome-specific introgression in Upland cotton on fiber and agronomic traits. Genetics 172:1927–1938

    Article  PubMed  CAS  Google Scholar 

  • Saranga Y, Menz M, Jiang CX, Wright RJ, Yakir D, Paterson AH (2002) Genetic mapping implicates osmotic potential as a major component of crop adaptation to arid conditions. Genome Res 11:1988–1995

    Article  Google Scholar 

  • SAS Institute Inc. (2008) SAS/STAT ® 9.2 User’s Guide. SAS Institute Inc, Cary

    Google Scholar 

  • Self SG, Liang KL (1987) Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc 82:605–610

    Article  Google Scholar 

  • Shappley ZW, Jenkins JN, Zhu J, Jack CM (1998) Quantitative trait loci associated with agronomic and fiber traits of Upland cotton. J Cotton Sci 2:153–163

    CAS  Google Scholar 

  • Stephens SG (1949) The cytogenetics of speciation in Gossypium. I. Selective elimination of the donor parent genotype in interspecific backcrosses. Genetics 34:627–637

    Google Scholar 

  • Tanksley SD, Nelson CJ (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Van Ooijen JW (2009) MapQTL 6.0. Software for the mapping of quantitative trait loci in experimental populations. Plant Research International, Wageningen

    Google Scholar 

  • Voorrips RE (2006) MapChart 2.2: software for the graphical presentation of linkage maps and QTLs. Plant Research International, Wageningen

    Google Scholar 

  • Vroh Bi I, Baudoin JP, Mergeai G (1998) Cytogenetics of the glandless-seed and glanded-plant trait from Gossypium sturtianum Willis introgressed into Upland cotton (Gossypium hirsutum L.). Plant Breeding 117:235–241

    Article  Google Scholar 

  • Vroh Bi I, Baudoin JP, Hau B, Mergeai G (1999a) Development of high-gossypol cotton plants with low-gossypol seeds using trispecies bridge crosses and in vitro culture of seed embryos. Euphytica 106:243–251

    Article  Google Scholar 

  • Vroh Bi I, Maquet A, Baudoin JP, du Jardin P, Jacquemin JM, Mergeai G (1999b) Breeding for ‘low-gossypol seed and high-gossypol plants’ in Upland cotton. Analysis of trispecies hybrids and backcross progenies using AFLPs and mapped RFLPs. Theor Appl Genet 99:124–1233

    Article  Google Scholar 

  • Waghmare VN, Rong JK, Rogers CJ, Pierce GJ, Wendel JF, Paterson AH (2005) Genetic mapping of a cross between Gossypium hirsutum (cotton) and the Hawaiian endemic, Gossypium tomentosum. Theor Appl Genet 111:665–676

    Article  PubMed  CAS  Google Scholar 

  • Wan Q, Zhang ZS, Hu MC, Chen L, Liu DJ, Chen X, Wang W, Zheng J (2007) T1 locus in cotton is the candidate gene affecting lint percentage. fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica 158:241–247

    Article  CAS  Google Scholar 

  • Wendel JF, Brubaker CL, Percival AE (1992) Genetic diversity in Gossypium hirsutum and the origin of Upland cotton. Am J Bot 79:1291–1310

    Article  Google Scholar 

  • Xiao J, Grandillo S, Ahn S, Yuan L, Tanksley SD, McCouch SR (1996) Genes from wild rice improve yield. Nature 384:223–224

    Article  CAS  Google Scholar 

  • Xu QH, Zhang XL, Nie YC (2001) Genetic diversity evaluation of cultivars (G. hirsutum L.) from the Changjiang River valley and Yellow River valley by RAPD markers. Acta Genet Sin 28:683–690 (in Chinese with English abstract)

    PubMed  CAS  Google Scholar 

  • Young ND, Tanksley SD (1989) RFLP analysis of the size of chromosomal segments retained around the Tm-2 locus of tomato during backcross breeding. Theor Appl Genet 77:353–359

    Article  CAS  Google Scholar 

  • Zhang ZS, Hu MC, Zhang J, Liu DJ, Zheng J, Zhang K, Wang W, Wan Q (2009) Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in (Gossypium hirsutum L.). Mol Breeding 24:49–61

    Article  Google Scholar 

  • Zhu LF, Zhang XL, Nie YC (2003) Analysis of genetic diversity in Upland cotton (Gossypium hirsutum L.) cultivars from China and foreign countries by RAPDs and SSRs. J Agric Biotechnol 11:450–455 (in Chinese with English abstract)

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the Paterson laboratory for many valuable contributions, and the US Department of Agriculture (02-01412), US National Science Foundation (IIP-0917856), and Cotton, Inc. for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Paterson.

Additional information

Communicated by I. Paran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Rong, J., Waghmare, V.N. et al. QTL alleles for improved fiber quality from a wild Hawaiian cotton, Gossypium tomentosum . Theor Appl Genet 123, 1075–1088 (2011). https://doi.org/10.1007/s00122-011-1649-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1649-x

Keywords

Navigation