Skip to main content
Log in

Inheritance and a major quantitative trait locus of seed starch content in mungbean (Vigna radiata (L.) Wilczek)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Mungbean (Vigna radiata) seeds are used for direct consumption by people and are raw material for sprout, starch and noodle industries in Asia. High-yielding mungbean cultivars with high seed starch content are preferred for the starch and noodle industries. At present, there is no report on genetic control of seed starch content in mungbean. The objective of this study were to (i) estimate heritability of the starch content in mungbean and (ii) locate a major quantitative trait locus (QTL) controlling starch content. An F2 population of 123 individuals was developed from the cross V6087AG (high seed starch) × V5020BY (low seed starch). Seeds of F2 and F2:3 populations were determined for seed starch content. Broad-sense heritability estimated for seed starch content in the F2 and F2:3 populations were higher than 80%. Seed starch content showed a relatively high and significant correlation (r = 0.6) with seed weigh in both F2 and F2:3 populations. Bulk segregant analysis using 123 polymorphic SSR markers revealed that only SSR marker CEDG092 on mungbean chromosome 8 associated with the starch content. QTL mapping using CEDG092 and 22 newly developed SSR markers the chromosome confirmed that a major QTL, qSSC8.1, flanked by markers Vr08-SSR113 and Vr08-SSR114 control seed starch content in both F2 and F2:3 populations. qSSC8.1 showed no localization with seed weight QTL and explained about 12.34–13.84% of total variation of the seed starch content in the two populations. Allele(s) from V6087AG at this QTL increased seed starch content. Vr08-SSR113 and Vr08-SSR114 spanned a genome region of about 385 Kbp and there were 21 annotated genes in this region. This genome region can be used as target for fine mapping to identify gene controlling seed starch content in mungbean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alam AKMM, Somta P, Muktadir M, Srinives P (2014) Quantitative trait loci associated with seed weight in mungbean (Vigna radiata (L.) Wilczek). Kasetsart J (Nat Sci) 48:197–204

    Google Scholar 

  • AOAC (1997) Official methods of analysis of AOAC international, 16th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • Bernier J, Kumar A, Ramaiah V, Spaner D, Atlin G (2007) A large-effect QTL for grain yield under reproductive-stage drought stress in upland rice. Crop Sci 47:507–516

    Article  Google Scholar 

  • Casañas F, Pérez-Vega E, Almirall A, Plans M, Sabaté J, Ferreira JJ (2013) Mapping of QTL associated with seed chemical content in a RIL population of common bean (Phaseolus vulgaris L.). Euphytica 192:279–288

    Article  Google Scholar 

  • Chankaew S, Isemura T, Isobe S, Kaga A, Tomooka N, Somta P et al (2014) Detection of genome donor species of neglected tetraploid crop Vigna reflexo-pilosa (créole bean), and genetic structure of diploid species based on newly developed EST-SSR markers from azuki bean (Vigna angularis). PLoS ONE 9(8):e104990

    Article  PubMed  PubMed Central  Google Scholar 

  • Collard BCY,  Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  CAS  PubMed  Google Scholar 

  • Craig J, Lloyd JR, Tomlinson K, Barber L, Edwards A, Wang TL et al (1998) Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. Plant Cell 10:413–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Imrie BC, Ahmed ZU, Eerens JPJ (1985) Heritability of seed weight in mungbean. SABRAO J Breed Genet 17:173–175

    Google Scholar 

  • Isemura T, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T et al (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 7(8):e41304. doi:10.1371/journal.pone.0041304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jane J, Chen YY, Lee LF, McPherson AE, Wong KS, Radosavljevic M, Kasemsuwan T (1999) Effects of amylopectin branch chain length and amylose content on the gelatinization and pasting properties of starch. Cereal Chem 75:629–637

    Article  Google Scholar 

  • Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443. doi:10.1038/ncomms6443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasemsuwan T, Bailey T, Jane J (1998) Preparation of clear noodles with mixtures of tapioca and high-amylose starches. Carbohyd Polym 32:301–312

    Article  Google Scholar 

  • Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y et al (2012) An SSR-based linkage map of yardlong bean (Vigna unguiculata (L.) Walp. Subsp. unguiculata Sesquipedalis Group) and QTL analysis of pod length. Genome 55:81–92

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Lii CY, Chang SM (1981) Characterization of red bean (Phaseolus radiatus var. aurea) starch and its noodle quality. J Food Sci 46:78–81

    Article  Google Scholar 

  • Lodhi MA, Ye GN, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Martin C, Smith AM (1995) Starch biosynthesis. Plant Cell 7:971–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease- resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muhammad K, Kusnandar F, Hashim DM, Rahman RA (1999) Application of native and phosphorylated tapioca starches in potato starch noodle. Inter J Food Sci Technol 34:275–280

    Article  CAS  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Seehalak W, Somta P, Sommanas W, Srinives P (2009) Microsatellite markers for mungbean developed from sequence database. Mol Ecol Resour 9:862–864

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Gustin J, Baier J, Settles MA, Vallejos CE (2014) Mapping QTLs for seed weight, starch and protein content in common bean (Phaseolus vulgaris L.). Plant and Animal Genome XXII Conference 2014, San Diego, USA. https://pag.confex.com/pag/xxii/webprogram/Paper11227.html. Accessed 1 July 2017

  • Somta P, Srinives P (2007) Genome research in mungbean (Vigna radiata (L.) Wilczek) and blackgram (V. mungo (L.) Hepper). Sci Asia 33((Supplement 1)):69–74

    Article  Google Scholar 

  • Somta P, Musch W, Kongsamai B, Chanprame S, Nakasathien S, Toojinda T et al (2008) New microsatellite markers isolated from mungbean (Vigna radiata (L. Wilczek). Mol Ecol Resour 8:1155–1157

    Article  CAS  PubMed  Google Scholar 

  • Somta P, Seehalak W, Srinives P (2009) Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet 10:1939–1943

    Article  CAS  Google Scholar 

  • Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W et al (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol 9:137. doi:10.1186/1471-2229-9-137

    Article  PubMed  PubMed Central  Google Scholar 

  • Tay DCS, Chen YL, Huang Y (1989) Germplasm catalog of mungbean (Vigna radiata (L.) Wilczek) and other Vigna species. Asian Vegetable Research and Development Center, Bangkok

    Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3–new capabilities and interfaces. Nucleic Acids Res 40:e115. doi:10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venuprasad R, Dalid CO, Del Valle M, Zhao D, Espiritu M, Sta Cruz MT et al (2009) Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis. Theor Appl Genet 120:177–190

    Article  PubMed  Google Scholar 

  • Vikram P, Mallikarjuna Swamy BP, Dixit S, Ahmed H, Sta Cruz MT, Singh AK et al (2012) Bulk segregant analysis: “An effective approach for mapping consistent-effect drought grain yield QTLs in rice”. Field Crops Res 134:185–192

    Article  Google Scholar 

  • Wang TL, Hedley CL (1985) Genetic and developmental analysis of the seed. In: Casey R, Davies DR (eds) Peas: genetics, molecular biology and biotechnology. CAB International, London

    Google Scholar 

  • Wang XW, Kaga A, Tomooka N, Vaughan DA (2004) The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean (Vigna angularis (Willd.) Ohwi & Ohashi). Theor Appl Genet 109:352–360

    CAS  PubMed  Google Scholar 

  • Xu A, Seib PA (1993) Structure of tapioca pearls compared to starch noodles from mung beans. Cereal Chem 70:463–670

    CAS  Google Scholar 

  • Yimram T, Somta P, Srinives P (2009) Genetic variation in cultivated mungbean germplasm and its implication in breeding for high yield. Field Crops Res 112:260–266

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by The Agricultural Research Development Agency (Public Organization), Thailand. We are thankful to Chai Nat Field Crops Research Center, Thailand for supporting field experiment. The authors also acknowledge 2017 Research Fund from the Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart Univerity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prakit Somta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masari, A., Kaewwongwal, A., Somta, P. et al. Inheritance and a major quantitative trait locus of seed starch content in mungbean (Vigna radiata (L.) Wilczek). Euphytica 213, 166 (2017). https://doi.org/10.1007/s10681-017-1960-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1960-y

Keywords

Navigation