Skip to main content
Log in

Adaptation to iron deficiency and high pH in evergreen azaleas (Rhododendron spp.): potential resources for breeding

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The growth of evergreen azaleas (Rhododendron spp.) can be altered by iron (Fe) chlorosis when plants are cultivated in a neutral-alkaline substrate. In this study, morphological and physiological responses to alkalinity and Fe deficiency were evaluated in five diploid Japanese azaleas to assess their potential as resources for breeding. R. obtusum ‘Kirin’, R. indicum ‘Shinsen’, R. × pulchrum ‘Sen-e-oomurasaki’, R. indicum ‘Osakazuki’, and R. ripense were pot cultivated in a peat-based substrate for 10 weeks, in acid and alkaline growing media with both adequate and inadequate Fe nutrition. Plant performance was generally affected by high pH of the substrate, while Fe deficiency by itself influenced few of the evaluated parameters, possibly due to the complex adaptive response mechanisms of these slow growing ornamental shrubs. According to the biochemical and physiological variations recorded on a long period of cultivation, R. indicum ‘Osakazuki’ reported the best performance. This azalea could be a valuable resource for breeders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GI:

Growth index

IO:

R. indicum ‘Osakazuki’

KR:

R. obtusum ‘Kirin’

RI:

R. ripense

SH:

R. indicum ‘Shinsen’

SO:

R. × pulchrum ‘Sen-e-oomurasaki’

References

  • Abadía J, Vázquez S, Rellán-Álvarez R et al (2011) Towards a knowledge-based correction of iron chlorosis. Plant Physiol Biochem 49:471–482. doi:10.1016/j.plaphy.2011.01.026

    Article  PubMed  Google Scholar 

  • Albano JP, Miller WB (1998) Marigold cultivars vary in susceptibility to iron toxicity. HortScience 33:1180–1182

    Google Scholar 

  • Alcántara E, Romera FJ, de la Guardia MD (1988) Genotypic differences in bicarbonate-induced iron chlorosis in sunflower. J Plant Nutr 11:65–75. doi:10.1080/01904168809363785

    Article  Google Scholar 

  • Alcántara E, Romera FJ, Cañete M, De la Guardia MD (2000) Effects of bicarbonate and iron supply on Fe(III) reducing capacity of roots and leaf chlorosis of the susceptible peach rootstock “Nemaguard”. J Plant Nutr 23:1607–1617. doi:10.1080/01904160009382127

    Article  Google Scholar 

  • Alcántara E, Montilla I, Ramírez P et al (2012) Evaluation of quince clones for tolerance to iron chlorosis on calcareous soil under field conditions. Sci Hortic (Amsterdam) 138:50–54. doi:10.1016/j.scienta.2012.02.004

    Article  Google Scholar 

  • Arve LE, Terfa MT, Gislerød HR et al (2013) High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant Cell Environ 36:382–392. doi:10.1111/j.1365-3040.2012.02580.x

    Article  CAS  PubMed  Google Scholar 

  • Berruti A, Scariot V (2012) Coconut fiber: a peat-like substrate for acidophilic plant cultivation. In: Acta Horticulturae. pp 629–636

  • Bosco R, Caser M, Vanara F, Scariot V (2013) Development of a rapid LC-DAD/FLD method for the simultaneous determination of auxins and abscisic acid in plant extracts. J Agric Food Chem 61:10940–10947. doi:10.1021/jf4034305

    Article  CAS  PubMed  Google Scholar 

  • Bosco R, Caser M, Ghione GG et al (2014) Dynamics of abscisic acid and indole-3-acetic acid during the early-middle stage of seed development in Rosa hybrida. Plant Growth Regul 75:265–270. doi:10.1007/s10725-014-9950-8

    Article  Google Scholar 

  • Briat JF, Lobréaux S (1997) Iron transport and storage in plants. Trends Plant Sci 2:187–193

    Article  Google Scholar 

  • Bunt AC (1973) Some physical and chemical characteristics of loamless pot-plant substrates and their relation to plant growth. In: I Symposium on Artificial Media in Horticulture 37. pp 1954–1965

  • Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530

    Article  CAS  Google Scholar 

  • Chaanin A, Preil W (1994) Influence of bicarbonate on iron deficiency chlorosis in Rhododendron. Acta Hortic 364:71–78

    Article  Google Scholar 

  • Clark MB, Mills HA, Robacker CD, Latimer JG (2003) Influence of nitrate:ammonium ratios on growth and elemental concentration in two azalea cultivars. J Plant Nutr 26:2503–2520. doi:10.1081/PLN-120025475

    Article  CAS  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679. doi:10.1146/annurev-arplant-042809-112122

    Article  CAS  PubMed  Google Scholar 

  • De Schepper S, Leus L, Mertens M et al (2001) Flow cytometric analysis of ploidy in Rhododendron (subgenus Tsutsusi). HortScience 36:125–127

    Google Scholar 

  • Demasi S, Caser M, Kobayashi N et al (2015a) Hydroponic screening for iron deficiency tolerance in evergreen azaleas. Not Bot Hortic Agrobot Cluj-Napoca 43:210–213. doi:10.15835/nbha4319929

    CAS  Google Scholar 

  • Demasi S, Handa T, Scariot V (2015b) Ferric chelate reductase activity under iron deficiency stress in azalea. Int J Hortic Floric 3:157–160

    Google Scholar 

  • Doležel J, Greilhuber J (2010) Nuclear genome size: are we getting closer? Cytom Part A 77:635–642

    Article  Google Scholar 

  • Dolezel J, Bartos J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry A 51:127–128. doi:10.1002/cyto.a.10013

    Article  CAS  PubMed  Google Scholar 

  • Fisher PR, Wik RM, Smith BR et al (2003) Correcting iron deficiency in calibrachoa grown in a container medium at high pH. Hort Technol 13:308–313

    CAS  Google Scholar 

  • Galle FC (1987) Azaleas (Revised and enlarged edition). Timber Press, Portland

    Google Scholar 

  • Giel P, Bojarczuk K (2002) The effect of high concentration of selected calcium salts on development of microcuttings of rhododendron R. “Catawbiense Grandiflorum” in in vitro cultures. Dendrobiology 48:23–29

    CAS  Google Scholar 

  • Giel P, Bojarczuk K (2011) Effects of high concentrations of calcium salts in the substrate and its pH on the growth of selected rhododendron cultivars. Acta Soc Bot Pol 80:105–114

    Article  CAS  Google Scholar 

  • Greer H (1984) The Satsuki Azaleas

  • Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms “genome size” and “C-value” to describe nuclear DNA contents. Ann Bot. doi:10.1093/aob/mci019

    Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro J (2007) Nuclear DNA content measurement. Flow Cytom Plant Cells 67–101

  • Gupta UC (1968) Studies on the O-phenanthroline method for determining iron in plant materials. Plant Soil 28:298–305. doi:10.1007/BF01880247

    Article  CAS  Google Scholar 

  • Hansen NC, Hopkins BG, Ellsworth JW, Jolley VD (2006) Iron nutrition in field crops. In: Barton LL, Abadia J (eds) Iron Nutrition in plants and rhizospheric microorganisms. Springer, Dordrecht, pp 23–59

    Chapter  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta 216:541–551. doi:10.1007/s00425-002-0920-4

    CAS  PubMed  Google Scholar 

  • Heursel J (1975) Inheritance of the flavonols azaleatin and quercetin in Rhododendron simsii Planch. and Rh. obtusum Planch. Z Pflanzenzüchtg 74:62–70

    CAS  Google Scholar 

  • Hidalgo PR, Harkess RL (2002) Earthworm castings as a substrate amendment for chrysanthemum production. HortScience 37:1035–1039

    Google Scholar 

  • Islam AKMS, Edwards DG, Asher CJ (1980) pH optima for crop growth—Results of a flowing solution culture experiment with six species. Plant Soil 54:339–357. doi:10.1007/BF02181830

    Article  Google Scholar 

  • Jelali N, Ben Salah I, M’sehli W et al (2011) Comparison of three pea cultivars (Pisum sativum) regarding their responses to direct and bicarbonate-induced iron deficiency. Sci Hortic (Amsterdam) 129:548–553. doi:10.1016/j.scienta.2011.06.010

    Article  CAS  Google Scholar 

  • Jolley VD, Cook KA, Hansen NC, Stevens WB (1996) Plant physiological responses for genotypic evaluation of iron efficiency in strategy I and strategy II plants—A review. J Plant Nutr 19:1241–1255

    Article  CAS  Google Scholar 

  • Jones JR, Ramsey TG, Lynch N, Krebs SDRS (2007) Ploidy levels and relative genome sizes of diverse species, hybrids, and cultivars of Rhododendron. J Am Rhododendron Soc Fall 61(4):220–227

    Google Scholar 

  • Kaufman SR, Smouse PE (2001) Comparing indigenous and introduced populations of Melaleuca quinquenervia (Cav.) Blake: response of seedlings to water and pH levels. Oecologia 127:487–494. doi:10.1007/s004420000621

    Article  PubMed  Google Scholar 

  • Kim SA, Guerinot ML (2007) Mining iron: iron uptake and transport in plants. FEBS Lett 581:2273–2280. doi:10.1016/j.febslet.2007.04.043

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nishizawa NK (2012) Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol 63:131–152. doi:10.1146/annurev-arplant-042811-105522

    Article  CAS  PubMed  Google Scholar 

  • Kofranek AM, Lunt OR (1975) Mineral nutrition. In: Kofranek AM, Larson RA (eds) Growing azaleas commercially. division of agricultural sciences, University of California, pp 36–46

  • Lei GJ, Zhu XF, Wang ZW et al (2014) Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plant Cell Environ 37:852–863. doi:10.1111/pce.12203

    Article  CAS  PubMed  Google Scholar 

  • Lemaire F (1994) Physical, chemical and biological properties of growing medium. Hydroponics Transpl Prod 396:273–284

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  • Loeppert RH, Wei LC, Ocumpaugh WR (1994) Soil factors influencing the mobilization of iron in calcareous soils. In: Manthey JA, Crowley DA, Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. Lewis, Boca Raton, pp 343–360

    Google Scholar 

  • Lucena JJ (2000) Effects of bicarbonate, nitrate and other environmental factors on iron deficiency chlorosis. A review. J Plant Nutr 23:1591–1606. doi:10.1080/01904160009382126

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral Nutrition of Higher Plants, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  • Marschner H, Römheld V, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9:695–713. doi:10.1080/01904168609363475

    Article  CAS  Google Scholar 

  • Martínez-Cuenca M-R, Forner-Giner MÁ, Iglesias DJ et al (2013) Strategy I responses to Fe-deficiency of two Citrus rootstocks differing in their tolerance to iron chlorosis. Sci Hortic (Amsterdam) 153:56–63. doi:10.1016/j.scienta.2013.01.009

    Article  Google Scholar 

  • Miller GW, Pushnik JC, Welkie GW (1984) Iron chlorosis, a world wide problem, the relation of chlorophyll biosynthesis to iron. J Plant Nutr 7:1–22. doi:10.1080/01904168409363172

    Article  CAS  Google Scholar 

  • Nelson EC (1999) So many really fine plants–an epitome of Japanese plants in Western European gardens. Curtis’s Bot Mag 16:52–68

    Article  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295. doi:10.1016/j.pbi.2011.02.001

    Article  CAS  PubMed  Google Scholar 

  • Pestana M, David M, de Varennes A et al (2001) Responses of “Newhall” orange trees to iron deficiency in hydroponics: effects on leaf chlorophyll, photosynthetic efficiency, and root ferric chelate reductase activity. J Plant Nutr 24:1609–1620. doi:10.1081/PLN-100106024

    Article  CAS  Google Scholar 

  • Pfarr E, Hokanson S, McNamara S (2015) Evaluating high soil ph tolerance of rhododendron cultivars. University of Minnesota Digital Conservancy

  • Preil W, Ebbinghaus R (1994) Breeding lime-tolerant Rhododendron rootstocks. Acta Hortic 364:61–70

    Article  Google Scholar 

  • Raviv M, Wallach R, Blom TJ (2001) The effect of physical properties of soilless media on plant performance—A review. In: International Symposium on Growing Media and Hydroponics 644. pp 251–259

  • Riviere L-M, Caron J (1999) Research on substrates: state of the art and need for the coming 10 years. In: International Symposium on Growing Media and Hydroponics 548. pp 29–42

  • Römheld V (2000) The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. J Plant Nutr 23:1629–1643. doi:10.1080/01904160009382129

    Article  Google Scholar 

  • Saywell LG, Cunningham BB (1937) Determination of iron: colorimetric o-phenanthroline method. Ind Eng Chem 9:67–69

    CAS  Google Scholar 

  • Scariot V, Kobayashi N (2008) Evaluation of variability in Japanese wild azaleas and application of lime-tolerant genetic resources for breeding. B. Abstr. First Symp. Hortic. Eur. 268–269

  • Scariot V, Caser M, Kobayashi N (2013) Evergreen azaleas tolerant to neutral and basic soils: breeding potential of wild genetic resources. Acta Hortic 990:287–292

    Article  Google Scholar 

  • Schmidt W (1999) Mechanisms and regulation of reduction-based iron uptake in plants. New Phytol 141:1–26. doi:10.1046/j.1469-8137.1999.00331.x

    Article  CAS  Google Scholar 

  • Smith BR, Fisher PR, Argo WR (2004a) Water-soluble fertilizer concentration and pH of a peat-based substrate affect growth, nutrient uptake, and chlorosis of container-grown seed geraniums. J Plant Nutr 27:497–524. doi:10.1081/PLN-120028875

    Article  CAS  Google Scholar 

  • Smith BR, Fisher PR, Argo WR (2004b) Nutrient uptake in container-grown impatiens and petunia in response to root substrate pH and applied micronutrient concentration. HortScience 39:1426–1431

    CAS  Google Scholar 

  • Stanton KM, Mickelbart MV (2014) Growth and foliar nutrition of Spiraea alba Du Roi and Spiraea tomentosa L. in response to root zone pH. Sci Hortic (Amsterdam) 165:23–28. doi:10.1016/j.scienta.2013.10.027

    Article  CAS  Google Scholar 

  • Symonds WL, Campbell LC, Clemens J (2001) Response of ornamental Eucalyptus from acidic and alkaline habitats to potting medium pH. Sci Hortic (Amsterdam) 88:121–131. doi:10.1016/S0304-4238(00)00202-8

    Article  CAS  Google Scholar 

  • Tagliavini M, Rombolà AD (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur J Agron 15:71–92. doi:10.1016/S1161-0301(01)00125-3

    Article  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50:571–599

    Article  CAS  Google Scholar 

  • Thomine S, Lanquar V (2011) Iron transport and signaling in plants. In: Transporters and pumps in plant signaling. Springer, pp 99–131

  • Tod H (1959) Rhododendrons and lime. RHS Rhododendron Camellia Yearb 13:19–24

    Google Scholar 

  • Valdez-Aguilar LA, Reed DW (2006) Comparison of growth and alkalinity-induced responses in two cultivars of hibiscus (Hibiscus rosa-sinensis L.). HortScience 41:1704–1708

    CAS  Google Scholar 

  • Valdez-Aguilar LA, Reed DW (2007) Response of selected greenhouse ornamental plants to alkalinity in irrigation water. J Plant Nutr 30:441–452. doi:10.1080/01904160601171983

    Article  CAS  Google Scholar 

  • Van Laere K, Leus L, Van Huylenbroeck J, Van Bockstaele E (2009) Interspecific hybridisation and genome size analysis in Buddleja. Euphytica 166:445–456. doi:10.1007/s10681-008-9844-9

    Article  Google Scholar 

  • Vogler H, Kuhlemeier C (2003) Simple hormones but complex signalling. Curr Opin Plant Biol 6:51–56. doi:10.1016/S1369-5266(02)00013-4

    Article  CAS  PubMed  Google Scholar 

  • Wallace A, Wallace GA (1986) Ornamental plants most likely to be killed by iron deficiency and some control measures. J Plant Nutr 9:1009–1014

    Article  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249. doi:10.1023/A:1006392424384

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210. doi:10.1046/j.0016-8025.2001.00824.x

    Article  CAS  PubMed  Google Scholar 

  • Wulandari C, Muraki S, Hisamura A et al (2014) Effect of iron deficiency on root ferric chelate reductase, proton extrusion, biomass production and mineral absorption of citrus root stock Orange Jasmine (Murraya exotica L.). J Plant Nutr 37:50–64. doi:10.1080/01904167.2013.837178

    Article  CAS  Google Scholar 

  • Xiong L, Zhu JK (2003) Regulation of abscisic acid biosynthesis. Plant Physiol 133:29–36. doi:10.1104/pp.103.025395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The research was financially supported by the Italian ‘Ministero dell’Istruzione, dell’Università e della Ricerca’ (Project PRIN 2009, prot. 2009BW3KL4_003). The mobility of SD was funded by ForESTFlowers Project (FP7-PEOPLE-2010-IRSES-269204). The authors wish to thank Kazuki Koiwai, Tomoki Takaku and Walter Gaino for providing technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Demasi.

Ethics declarations

Conflict of interest

The authors declare that have no conflict of interest.

Additional information

This article is part of the Topical Collection on Plant Breeding: the Art of Bringing Science to Life. Highlights of the 20th EUCARPIA General Congress, Zurich, Switzerland, 29 August–1 September 2016

Edited by Roland Kölliker, Richard G. F. Visser, Achim Walter & Beat Boller

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demasi, S., Caser, M., Handa, T. et al. Adaptation to iron deficiency and high pH in evergreen azaleas (Rhododendron spp.): potential resources for breeding. Euphytica 213, 148 (2017). https://doi.org/10.1007/s10681-017-1931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1931-3

Keywords

Navigation