Skip to main content
Log in

Insights on the Adaptation of the Tunisian Halophyte Sulla carnosa to Fe Deficiency Alone and in Combination with Salicylic Acid Seed Priming

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Improving forage crops performance under iron (Fe) deficiency conditions is challenging, thus besides genotypic screening new approaches are required. Among these new approaches, priming technique is eco-friendly, efficient and cost effective. The aim of this study was to evaluate the remedial effect of salicylic acid (SA 0.25 mM) seed priming on plant growth, ionic content, in addition to the photosynthetic capacity under different Fe concentration conditions in two Sulla carnosa cultivars ‘Sidi Khlif’ and ‘Kalbia’, with different tolerance to such constraint. Under unprimed conditions, Fe deficiency reduced shoot relative growth rate (RGR), Fe and potassium (K) contents along with chlorophyll concentration in both cultivars, compared to the control. Nevertheless, S. carnosa was able to maintain root RGR under these unfavorable conditions. Additionally, Fe deficiency affected differently the gas exchange parameters. Interestingly, priming seeds with SA improved growth performance, as well as Fe and K uptake of deficient S. carnosa plants via simulating the medium acidification. The changes above described in all physiological parameters were much less pronounced in ‘Sidi Khlif’ than in ‘Kalbia’. We conclude that SA seed priming had a positive effect on the physiological behavior of S. carnosa plants subjected to Fe deficiency. However, the degree of recover varied depending on the cultivar and the plant tissue. Mitigation of Fe deficiency by SA could be in part due to the aptitude to assure an enhanced plant growth and the adjustment of photosynthetic activity promoting more effective nutrient assimilation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Jiménez, S., Morales, F., Abadía, A., Abadía, J., Moreno, M.A., and Gogorcena, Y., Elemental 2-D mapping and changes in leaf iron and chlorophyll in response to iron re-supply in iron-deficient GF 677 peach-almond hybrid, Plant Soil, 2009, vol. 315, p. 93.

    Article  Google Scholar 

  2. Yan, K., Xu, H., Cao, W., and Chen, X., Salt priming improved salt tolerance in sweet sorghum by enhancing osmotic resistance and reducing root Na+ uptake, Acta Physiol. Plant., 2015, vol. 37, p. 203.

    Article  CAS  Google Scholar 

  3. Dell’Orto, M., Santi, S., De Nisi, P., Cesco S., Varanini, Z., Zocchi, G., and Pinton, R., Development of Fe-deficiency responses in cucumber (Cucumis sativus L.) roots: involvement of plasma membrane H+-ATPase activity, J. Exp. Bot., 2000, vol. 51, p. 695.

    PubMed  Google Scholar 

  4. Briat, J.F., Dubos, C., and Gaymard, F., Iron nutrition, biomass production and plant product quality, Trends Plant Sci., 2015, vol. 20, p. 33.

    Article  CAS  PubMed  Google Scholar 

  5. Jelali, N., Wissal, M., Dell’orto, M., Abdelly, C., Gharsalli, M., and Zocchi, G., Changes of metabolic responses to direct and induced Fe deficiency of two Pisum sativum cultivars, Environ. Exp. Bot., 2010, vol. 68, p. 238.

    Article  CAS  Google Scholar 

  6. Drazic, G. and Mihailovic, N., Modification of cadmium toxicity in soybean seedlings by salicylic acid, Plant Sci., 2005, vol. 168, p. 511.

    Article  CAS  Google Scholar 

  7. Koyro, H.W., Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.), Environ. Exp. Bot., 2006, vol. 15, p. 136.

    Article  Google Scholar 

  8. Tariq, A. and Erkut, P., Seed priming with gibberellic acid rescues chickpea (Cicer arietinum L.) from chilling stress, Acta Physiol. Plant., 2020, vol. 42, p. 139.

    Article  Google Scholar 

  9. Zhu, H., Ruiqin., Z, Weili, C., Zhenhong, G., Xiaolin, X., Haiquan, Z., and Qing, Y., The possible involvement of salicylic acid and hydrogen peroxide in the systemic promotion of phenolic biosynthesis in clover roots colonized by arbuscular mycorrhizal fungus, J. Plant Physiol., 2015, vol. 178, p. 27.

    Article  CAS  PubMed  Google Scholar 

  10. Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaïbi, W., and Djebali, W., Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum L., Ecotoxicol. Environ. Saf., 2010, vol. 73, p. 1004.

    Article  CAS  PubMed  Google Scholar 

  11. Shi, Q. and Zhu, Z., Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber, Environ. Exp. Bot., 2008, vol. 63, p. 317.

    Article  CAS  Google Scholar 

  12. Rahat, N., Noushina, I., Shabina, S., and Nafees, A.K., Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars, J. Plant Physiol., 2011, vol. 168, p. 807.

    Article  Google Scholar 

  13. Nakib, D., Slatni, T., Di Foggia, M., Adamo Domenico, R., and Abdelly, C., Changes in organic compounds secreted by roots in two Poaceae species (Hordeum vulgare and Polypogon monspenliensis) subjected to iron deficiency, J. Plant Res., 2021, vol. 134, p. 151.

    Article  CAS  PubMed  Google Scholar 

  14. Rabhi, M., Barhoumi, Z., Ksouri, R., Abdelly, C., and Gharsalli, M., Interactive effects of salinity and iron deficiency in Medicago ciliaris, C. R. Biol., 2007, vol. 330, p. 779.

    Article  CAS  PubMed  Google Scholar 

  15. Trifi-Farah, N., Baatout, H., and Boussaïd, M., Evaluation des ressources génétiques des espèces du genre Hédysarum dans le bassin méditerranéen, Plant Genet. Res. News, 2002, vol. 130, p. 1.

    Google Scholar 

  16. Kaddour, R., Nehla, S., Houda, C., Nawel, N., Olfa, B., Hela, M., Imen, T., Mokhtar, L., Margaret, G., and Neila, T., Correlation between salt tolerance and genetic diversity between Sulla carnosa and Sulla coronaria, Afr. J. Biotech., 2011, vol. 10, p. 14355.

    Article  CAS  Google Scholar 

  17. Farhat, N., Sassi, H., Zorrig, W., Abdelly, C., Barhoumi, Z., Smaoui, A., and Rabhi, M., Is excessive Ca the main factor responsible for Mg deficiency in Sulla carnosa on calcareous soils? J. Soil Sediments, 2015, vol. 15, p. 1483.

    Article  CAS  Google Scholar 

  18. Lichtenthaler, H.K., Chlorophylls and carotenoids: pigments of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, p. 350.

    Article  CAS  Google Scholar 

  19. Shakirova, F.M., Sakhabutdinova, A.R., Bezrukova, M.V., Fatkhutdinova, R.A., and Fatkhutdinova, D.R., Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity, Plant Sci., 2003, vol. 164, p. 317.

    Article  CAS  Google Scholar 

  20. Jisha, K.C. and Puthur, J.T., Seed halopriming outdo hydropriming in enhancing seedling vigor and osmotic stress tolerance potential of rice varieties, J. Crop. Sci. Biotechnol., 2014, vol. 17, p. 209.

    Article  Google Scholar 

  21. Khouni, A., Rabhi, M., Gianov, A., Krol, M., Zorrig, W., Smaoui, A., Abdelly, C., and Norman, P.A.H., Structural and functional integrity of Sulla carnosa photosynthetic apparatus under iron deficiency conditions, Plant Biol., 2017, vol. 20, p. 415.

    Google Scholar 

  22. Chen, L., Wang, G., Chen, P., Zhu, H., Wang, S., and Ding, Y., Shoot-root communication plays a key role in physiological alterations of rice (Oryza sativa) under iron deficiency, Front. Plant Sci., 2018, vol. 9, p. 757.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jelali, N., Ben Youssef, R., Boukari, N., Zorrig, W., Dhifi, W., and Abdelly, C., Salicylic acid and H2O2 seed priming alleviates Fe deficiency through the modulation of growth, root acidification capacity and photosynthetic performance in Sulla carnosa, Plant Physiol. Biochem., 2021, vol. 159, p. 392.

    Article  CAS  PubMed  Google Scholar 

  24. Boukari, N., Jelali, N., Justin, B.R., Ben Youssef, R., Abdelly, C., A., and Abdelali, H., Salicylic acid seed priming improves tolerance to salinity, iron deficiency and their combined effect in two ecotypes of Alfalfa, Environ. Exp. Bot., 2019, vol. 167, p. 103.

    Article  Google Scholar 

  25. Dong, Y., Chen, W., Liu, F., and Wan, Y., Effects of exogenous salicylic acid and nitric oxide on peanut seedlings growth under iron deficiency, Commun. Soil Sci. Plant Anal., 2016, vol. 47, p. 2490.

    Article  CAS  Google Scholar 

  26. Abadía, J., Vázquez, S., Rellán-Álvarez, R., El-Jendoubi, H., Abadía, A., Álvarez-Fernández, A., and López-Millán, A.F., Towards a knowledge-based correction of iron chlorosis, Plant Physiol. Biochem., 2011, vol. 49, p. 471.

    Article  PubMed  Google Scholar 

  27. Miller, G.W., Pushnik, J.C., and Welkie, G.W., Iron chlorosis, a worldwide problem, the relation of chlorophyll biosynthesis to iron, J. Plant Nutr., 1984, vol. 7, p. 1.

    Article  CAS  Google Scholar 

  28. M’sehli, W., Dell’Orto, M., De Nisi, P., Donnini, S., Abdelly, C., Zocchi, G., and Gharsalli, M., Responses of two ecotypes of Medicago ciliaris to direct and bicarbonate induced iron deficiency conditions, Acta Physiol. Plant., 2009, vol. 31, p. 667.

    Article  Google Scholar 

  29. Larbi, A., Abadía, A., Abadía, J., and Morales, F., Down co-regulation of light absorption, photochemistry and carboxylation in Fe-deficient plants growing in different environments. Photosynth. Res., 2006, vol. 89, p. 113.

    Article  CAS  PubMed  Google Scholar 

  30. Hafsi, C., Falleh, H., Saada, M., Ksouri, R., and Abdelly, C., Potassium deficiency alters growth, photosynthetic performance, secondary metabolites content, and related antioxidant capacity in Sulla carnosa grown under moderate salinity, Plant Physiol. Biochem., 2017, vol. 118, p. 609.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was conducted in the Laboratory of Extremophile Plants (LPE: Laboratoire des Plantes Extrêmophiles, Tunisia) of the Centre of Biotechnology of Borj-Cedria (CBBC), Tunis, Tunisia. The authors thank the staff of the Centre of Biotechnology of Borj-Cedria (CBBC) for technical and administrative supports.

Funding

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (project no. LR15CBBC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Jelali.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Abbreviations: SA—salicylic acid; Chl—chlorophyll; Car—carotenoid; E—transpiration rate; Gs—stomatal conductance; A—net CO2 assimilation; WUE—water use efficiency; PS—primed seeds; UPS—unprimed seeds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jelali, N., Youssef, R.B., Boukari, N. et al. Insights on the Adaptation of the Tunisian Halophyte Sulla carnosa to Fe Deficiency Alone and in Combination with Salicylic Acid Seed Priming. Russ J Plant Physiol 69, 76 (2022). https://doi.org/10.1134/S1021443722040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722040069

Keywords:

Navigation