Skip to main content

Advertisement

Log in

Physiological and molecular characterization of Kenyan barley (Hordeum vulgare L.) seedlings for salinity and drought tolerance

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genotype variation in selected Kenyan barley breeding lines was determined by differential profiles of seed hordein proteins using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Consequently, a phylogenetic relationship derived from unweighted pair group method with arithmetic mean Jaccard clustering matrix was generated based on absence or presence of hordein bands. In parallel, physiological and molecular responses to abiotic stresses were evaluated in seedlings. For physiological assays seedlings were exposed to 0, 300, 600 mM NaCl. Variation in physiological parameters including ionic conductance, lipid peroxidation, chlorophyll content, accumulation of proline, glycine betaine, sucrose was determined. Response to abiotic stress was found to be genotype dependent and varied with the stress magnitude. A low ionic conductance, lipid peroxidation and increased proline, sucrose, GB, chlorophyll were associated with stress tolerance. The lines Nguzo, MN-24 and MN-8 were tolerant while Karne, and Sabini were susceptible to abiotic stress. Transcript analysis of selected members of the dehydrin (Dhn) superfamily (LEA II) genes in root and shoot tissue were evaluated. Expression of Dhn genes was found to be genotype dependent, tissue specific and was affected by type and duration of stress. Dehydrin Dhn1 and Dhn9 genes were exclusively dehydration responsive while Dhn3, Dhn4 and Dhn7 were induced by both dehydration and increased salt treatments. Immunoblot analysis using polyclonal anti-sera detecting the K segment consensus peptide TGEKKGIMDKIKEKLPGQH showed a direct correlation between transcript level and accumulation of corresponding Dhn proteins in response to stress. These screening assays may be potential selection markers to aid rapid screening in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aboughadareh AP, Naghavi MR, Khalili M (2013) Water deficit stress tolerance in some of barley genotypes and landraces under field conditions. Notu Sci Biol 5:249–255

    Google Scholar 

  • Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signalling. Biol Plant 54:201–212

    Article  CAS  Google Scholar 

  • Anjum SA, Xie X, Wang L, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032

    Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts Polyphenoloxidase in Beta vulgaris. Plant Physiol 24:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashraf M, Ali Q (2008) Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot 63:266–273

    Article  CAS  Google Scholar 

  • Baik B-K, Ullrich SE (2008) Barley for food: characteristics, improvement, and renewed interest. J Cereal Sci 48:233–242

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bessieres M-A, Gibon Y, Lefeuvre JC, Larher F (1999) A single-step purification for glycine betaine determination in plant extracts by isocratic HPLC. J Agric Food Chem 47:3718–3722

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bravo LA, Gallardo J, Navarrete A, Olave N, Martínez J, Alberdi M, Close TJ, Corcuera LJ (2003) Cryoprotective activity of a cold induced dehydrin purified from barley (Hordeum vulgare L.). Physiol Plant 118:262–269

    Article  CAS  Google Scholar 

  • Brini F, Hanin M, Lumbreras V, Irar S, Pages M, Masmoudi K (2007) Functional characterization of DHN-5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat (Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Sci 172:20–28

    Article  CAS  Google Scholar 

  • Chakraborty U, Pradhan B (2012) Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Braz J Plant Physiol 24:117–130

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Choi D-W, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv Dicktoo. Theor Appl Genet 98:1234–1247

    Article  CAS  Google Scholar 

  • Close TJ (1996) Dehydrins: emergence of a biochemical role of a family of plant dehydration proteins. Physiol Plant 97:795–803

    Article  CAS  Google Scholar 

  • Close TJ (1997) Dehydrins: a commonalty in the response of plants to dehydration and low temperature. Physiol Plant 100:291–296

    Article  CAS  Google Scholar 

  • Close TJ, Fenton RD, Moonan F (1993) A view of plant dehydrins using antibodies specific to the carboxy terminal peptide. Plant Mol Biol 23:279–286

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lacerda CF, Cambraia J, Oliva MA, Ruiz HA, Prisco JT (2003) Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environ Exp Bot 49:107–120

    Article  Google Scholar 

  • de Mezer M, Turska-Taraska A, Kaczmarek Z, Glowacka K, Swarcewicz B, Rorat T (2014) Differential physiological and molecular response of barley genotypes to water deficit. Plant Physiol Biochem 80:234–248

    Article  PubMed  Google Scholar 

  • Demiral T, Türkan I (2005) Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot 53:247–257

    Article  CAS  Google Scholar 

  • Du J-B, Yuan S, Chen Y-E, Sun X, Zhang Z-W, Xu F, Yuan M, Shang J, Lin H-H (2011) Comparative expression analysis of dehydrins between two barley varieties, wild barley and Tibetan hulless barley associated with different stress resistance. Acta Physiol Plant 33:567–574

    Article  Google Scholar 

  • Ebrahim S, Shiferaw E, Hailu F (2015) Evaluation of genetic diversity in barley (Hordeum vulgare L.) from Wollo high land areas using agromorphological traits and hordein. Afr J Biotech 14:1886–1896

    CAS  Google Scholar 

  • Echart-Almeida C, Cavalli-Molina S (2001) Hordein polypeptide patterns in relation to malting quality in Brazilian barley varieties. Pesqui Agropecu Brasil 36:211–217

    Article  Google Scholar 

  • França MGC, Thi ATP, Pimentel C, Rossiello ROP, Zuily-Fodil Y, Laffray D (2000) Differences in growth and water relations among Phaseolus vulgaris cultivars in response to induced drought stress. Environ Exp Bot 43:227–237

    Article  Google Scholar 

  • Frankel OH, Brown AHD (1984) Plant genetic resources today: a critical appraisal. In: Holden JHW, Williams JT (eds) Crop genetic resources: conservation and evaluation. Allen & Unwin, London

    Google Scholar 

  • Galinski EA, Herzog RM (1990) The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris). Arch Microbiol 153:607–613

    Article  CAS  Google Scholar 

  • Gechev TS, Van Breusegem F, Stone JM, Denev I, Laloi C (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28:1091–1101

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Goday A, Jensen AB, Culianez-Macia FA, Albà MM, Figueras M, Serratosa J, Torrent M, Pagès M (1994) The maize abscisic acid-responsive protein Rab17 is located in the nucleus and interacts with nuclear localization signals. Plant Cell 6:351–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom. doi:10.1155/2014/701596

    Google Scholar 

  • Hanin M, Brini F, Ebel C, Toda Y, Takeda S, Masmoudi K (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal Behav 6:1503–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Terashima S, Kuboi T (2001) Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. J Plant Physiol 158:1333–1339

    Article  CAS  Google Scholar 

  • Harsh A, Sharma YK, Joshi U, Rampuria S, Singh G, Kumar S, Sharma R (2016) Effect of short-term heat stress on total sugars, proline and some antioxidant enzymes in moth bean (Vigna aconitifolia). Ann Agric Sci 61:57–64

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Holkova L, Prášil I-T, Bradáčová M, Vitamvas P, Chloupek O (2009) Screening for frost tolerance in wheat using the expression of dehydrin genes Wcs120 and Wdhn13 at 17 °C. Plant Breed 128:420–422

    Article  CAS  Google Scholar 

  • Houde M, Dhindsa RS, Sarhan F (1992) A molecular marker to select for freezing tolerance in Gramineae. Mol Gen Genet 234:43–48

    CAS  PubMed  Google Scholar 

  • Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Biol 47:377–403

    Article  CAS  Google Scholar 

  • Ismail AM, Hall AE, Close TJ (1999) Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proc Natl Acad Sci 96:13566–13570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob JP, Pescatore AJ (2012) Using barley (Hordeum vulgare L) in poultry diets—A review. J Appl Poult Res 21:915–940

    Article  CAS  Google Scholar 

  • Jambunathan N (2010) Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Protocols, Plant Stress Tolerance. doi:10.1007/978-1-60761-702-0_18

    Book  Google Scholar 

  • Jensen AB, Goday A, Figueras M, Jessop AC (1998) Phosphorylation mediates the nuclear targeting of the maize Rab17 protein. Plant J 13:691–697

    Article  CAS  PubMed  Google Scholar 

  • Karami A, Shahbazi M, Niknam V, Shobbar ZS, Tafreshi RS, Abedini R, Mabood HE (2013) Expression analysis of dehydrin multigene family across tolerant and susceptible barley (Hordeum vulgare L.) genotypes in response to terminal drought stress. Acta Physiol Plant 35:2289–2297

    Article  CAS  Google Scholar 

  • Khan MA, Gemenet DC, Villordon A (2016) Root system architecture and abiotic stress tolerance: current Knowledge in root and tuber crops. Front Plant Sci 7:1584–1597

    CAS  PubMed  PubMed Central  Google Scholar 

  • King SW, Joshi CP, Nguyen HT (1992) DNA sequence of an ABA-responsive gene (rab 15) from water-stressed wheat roots. Plant Mol Biol 18:119–121

    Article  CAS  PubMed  Google Scholar 

  • Kishori K, Polavarapu B, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  Google Scholar 

  • Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT (2014) Wheat and barley dehydrins under cold, drought, and salinity “what can LEA-II proteins tell us about plant stress response? Front Plant Sci 5:343–349

    PubMed  PubMed Central  Google Scholar 

  • Kosová K, Vítámvás P, Urban MO, Klíma M, Roy A, Prášil IT (2015) Biological networks underlying abiotic stress tolerance in temperate crops: a proteomic perspective. Int J Mol Sci 16:20913–20942

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotchoni SO, Kuhns C, Ditzer A, Kirch H-H, Bartels D (2006) Over-expression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell Environ 29:1033–1048

    Article  CAS  PubMed  Google Scholar 

  • Kumar M, Lee S-C, Kim J-Y, Kim S-J, Kim S-R (2014) Over-expression of dehydrin gene, OsDhn1, improves drought and salt stress tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). J Plant Biol 57:383–393

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lee YJ, Lee TG, Jeon WB, Kim DY, Hong MJ, Lee MB, Hyun JN, Kim MJ, Lee MJ, Park CS (2010) Employment of hordein subunit polymorphisms in establishing selection criteria for high quality malting barley (Hordeum vulgare L.). J Crop Sci Biotechnol 13:91–97

    Article  Google Scholar 

  • Leistrumaitė A, Paplauskienė V (2007) Genetic resources of spring barley: analysis of Hordein polymorphism. Biologija 53.No. 3. P. 30.33

  • López-Pérez L, del Carmen Martínez-Ballesta M, Maurel C, Carvajal M (2009) Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry 70:492–500

    Article  PubMed  Google Scholar 

  • Luis A, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol 141:330–335

    Article  Google Scholar 

  • Moller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance Engineered by cell type-specific alteration of Na+ transport in Arabidopsis. Cell 21:2163–2178

    Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munoz-Mayor A, Pineda B, Garcia-Abellán JO, Antón T, Garcia-Sogo B, Sanchez-Bel P, Flores FB, Atarés A, Angosto T, Pintor-Toro JA (2012) Overexpression of dehydrin tas14 gene improves the osmotic stress imposed by drought and salinity in tomato (Solanum lycopersicum). J Plant Physiol 169:459–468

    Article  CAS  PubMed  Google Scholar 

  • Mzid R, Chibani F, Ayed RB, Hanana M, Breidi J, Kabalan R, El-Hajj S, Machlab H, Rebai A, Chalak L (2016) Genetic diversity in barley landraces (Hordeum vulgare L. subsp. vulgare) originated from Crescent Fertile region as detected by seed storage proteins. J Genet 95:733–739

    Article  PubMed  Google Scholar 

  • Newman CW, McGuire CF (1985) Nutritional quality of barley. Barley 403–456

  • Nouri M-Z, Moumeni A, Komatsu S (2015) Abiotic stresses: insight into gene regulation and protein expression in photosynthetic pathways of plants. Int J Mol Sci 16:20392–20416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45:263–279

    Article  CAS  PubMed  Google Scholar 

  • Park E-J, Jeknić Z, Sakamoto A, DeNoma J, Yuwansiri R, Murata N, Chen THH (2004) Genetic engineering of glycine betaine synthesis in tomato protects seeds, plants, and flowers from chilling damage: betaine protects tomato plants against chilling stress. Plant J 40:474–487

    Article  CAS  PubMed  Google Scholar 

  • Qu A-L, Ding Y-F, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432:203–207

    Article  CAS  PubMed  Google Scholar 

  • Radović D, Vapa L (1996) Hordein composition of Yugoslav barley cultivars. Cereal Res Commun 1:331–337

    Google Scholar 

  • Rapacz M, Kościelniak J, Jurczyk B, Adamska A, Wójcik M (2010) Different patterns of physiological and molecular response to drought in seedlings of malt-and feed-type barleys (Hordeum vulgare). J Agron Crop Sci 196:9–19

    Article  CAS  Google Scholar 

  • Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3:458–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Ribaut JM, Banziger M, Betran J, Jiang C, Edmeades GO, Dreher K, Hoisington D (2002) Use of molecular markers in plant breeding: drought tolerance improvement in tropical maize. Quantitative Genetics, Genomics, and Plant Breeding 85–99

  • Rodriguez EM, Svensson JT, Malatrasi M, Choi D-W, Close TJ (2005) Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theor Appl Genet 110:852–858

    Article  CAS  PubMed  Google Scholar 

  • Rolny N, Costa L, Carrión C, Guiamet JJ (2011) Is the electrolyte leakage assay an unequivocal test of membrane deterioration during leaf senescence? Plant Physiol Biochem 49:1220–1227

    Article  CAS  PubMed  Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11:536–556

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rodríguez E, Rubio-Wilhelmi M, Cervilla LM, Blasco B, Rios JJ, Rosales MA, Romero L, Ruiz JM (2010) Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci 178:30–40

    Article  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot 1:1–26

    Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  CAS  PubMed  Google Scholar 

  • Shewry PR, Pratt HM, Miflin BJ (1978) Varietal identification of single seeds of barley by analysis of hordein polypeptides. J Sci Food Agric 29:587–596

    Article  CAS  Google Scholar 

  • Sun X, Yuan S, Lin H-H (2006) Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress. Zeitschrift Für Naturforschung C 61:245–250

    CAS  Google Scholar 

  • Suprunova T, Krugman T, Fahima T, Chen G, Shams I, Korol A, Nevo E (2004) Differential expression of dehydrin genes in wild barley, Hordeum spontaneum, associated with resistance to water deficit. Plant Cell Environ 27:1297–1308

    Article  CAS  Google Scholar 

  • Svensson J, Ismail AM, Palva ET, Close TJ (2002) Dehydrins. Cell and Molecular Response to Stress 3:155–171

    Article  CAS  Google Scholar 

  • Tavakoli F, Vazan S, Moradi F, Shiran B, Sorkheh K (2010) Differential response of salt-tolerant and susceptible barley genotypes to salinity stress. J Crop Improv 24:244–260

    Article  CAS  Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela-Avendaño J, Mota IE, Uc G, Perera R, Valenzuela-Soto E, Aguilar JZ (2005) Use of a simple method to isolate intact RNA from partially hydrated Selaginella lepidophylla plants. Plant Mol Biol Rep 23:199–200

    Article  Google Scholar 

  • Widodo, Patterson JH, Newbigin E, Tester M, Bacic A, Roessner U (2009) Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, sahara and clipper, which differ in salinity tolerance. J Exp Bot 60:4089–4103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA (2008) Breeding for abiotic stresses for sustainable agriculture. Philos Transact R Soc Lond B 363:703–716

    Article  CAS  Google Scholar 

  • Xi D, Lan L, Wang J, Xu W, Xiang B, Lin H (2006) Variation analysis of two cucumber mosaic viruses and their associated satellite RNAs from sugar beet in China. Virus Genes 33:293–298

    CAS  PubMed  Google Scholar 

  • Yakubov B, Barazani O, Shachack A, Rowland LJ, Shoseyov O, Golan-Goldhirsh A (2005) Cloning and expression of a dehydrin-like protein from Pistacia vera L. Trees 19:224–230

    Article  CAS  Google Scholar 

  • Yang Y, He M, Zhu Z, Li S, Xu Y, Zhang C, Singer SD, Wang Y (2012) Identification of the dehydrin gene family from grapevine species and analysis of their responsiveness to various forms of abiotic and biotic stress. BMC Plant Biol 12:140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Sun X, Yang S, Li X, Yang Y (2014) Molecular cloning and characterization of a novel SK3-type dehydrin gene from Stipa purpurea. Biochem Biophys Res Commun 448:145–150

    Article  CAS  PubMed  Google Scholar 

  • Yasar F, Ellialtioglu S, Yildiz K (2008) Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russ J Plant Physiol 55:782–786

    Article  CAS  Google Scholar 

  • Zhang G, Li Y, Dong S (2010) Assessing frost hardiness of Pinus bungeana shoots and needles by electrical impedance spectroscopy with and without freezing tests. J Plant Ecol 3:285–293

    Article  Google Scholar 

Download references

Acknowledgements

I wish to recognize with thanks the National Council for Science and Technology (NACOSTI), Nairobi, Kenya jointly with Deutscher Akademischer Austauschdienst (DAAD), Bonn, Germany for research funding. The barley lines used were obtained from Kenya Agricultural and Livestock Research Organization, Njoro. Thanks to Prof T.J Close of UC-Davis, USA for providing the DHN antibodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dorothea Bartels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binott, J.J., Owuoche, J.O. & Bartels, D. Physiological and molecular characterization of Kenyan barley (Hordeum vulgare L.) seedlings for salinity and drought tolerance. Euphytica 213, 139 (2017). https://doi.org/10.1007/s10681-017-1924-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1924-2

Keywords

Navigation