Skip to main content
Log in

The biological characters and polyploidy of progenies in hybridization in 4×–2× crosses in Dianthus caryophyllus

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Crosses were carried out between tetraploid Dianthus caryophyllus cv ‘Butterfly’ (2n = 4×= 60) and seven diploid cultivars (2n = 2×= 30). Fewer seeds were obtained and the low seed germination was found which suggested the post-fertilization barrier in 4×–2× crosses. 12 progeny were obtained from 5 crossing combinations. Chromosome analysis revealed that they consisted of 5 triploid hybrid plants and 7 tetraploid hybrid plants, suggesting that unreduced male gamete maybe be involved in polyploid formation. Various flower shapes and colours were observed in the polyploid progenies, showing that sexual polyploidization results in greater variability and fitness. The hybrids obtained by 4×–2× crosses showed the flower-size intermediate between the parents or larger than the parents. Some favourable characters of parents such as flower shape, flower colour and resistance to Fusarium oxysporum, were successfully transmitted to the hybrids. Since polyploid hybrids have some of the profitable characters of the parents, they are expected to be used for future breeding in carnation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersson-Kottö I (1931) Interspecific crosses in the genus Dianthus. Genetica 13(1):77–112

    Article  Google Scholar 

  • Asatryan A, Tel-Zur N (2013) Pollen tube growth and self-incompatibility in three Ziziphus species (Rhamnaceae). Flora Morphol Distrib Funct Ecol Plants 208(5–6):390–399. doi:10.1016/j.flora.2013.04.010

    Article  Google Scholar 

  • Beck-Pay SL (2012) Identification of pre-zygotic reproductive and morphological barriers limiting controlled crossed seed production of triploid Acacia mearnsii. S Afr J Bot 79:51–61. doi:10.1016/j.sajb.2011.11.002

    Article  Google Scholar 

  • Berger F (2008) Double-fertilization, from myths to reality. Sex Plant Reprod 21(1):3–5

    Article  Google Scholar 

  • Chung MY, Chung JD, Ramanna M, Van Tuyl JM, Lim KB (2013) Production of polyploids and unreduced gametes in Lilium auratum×L. henryi hybrid. Int J Biol Sci 9(7):693

    Article  PubMed  PubMed Central  Google Scholar 

  • Crespel L, Ricci S, Gudin S (2006) The production of 2n pollen in rose. Euphytica 151(2):155–164

    Article  Google Scholar 

  • Deng Y, Teng N, Chen S, Chen F, Guan Z, Song A, Chang Q (2010) Reproductive barriers in the intergeneric hybridization between Chrysanthemum grandiflorum (Ramat.) Kitam. and Ajania przewalskii Poljak. (Asteraceae). Euphytica 174(1):41–50

    Article  Google Scholar 

  • Dhooghe E, Van Laere K, Eeckhaut T, Leus L, Van Huylenbroeck J (2011) Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Org Cult 104(3):359–373. doi:10.1007/s11240-010-9786-5

    Article  Google Scholar 

  • Fa Bretagnolle, Thompson J (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129(1):1–22

    Article  Google Scholar 

  • Gatt MK, Hammett KR, Markham KR, Murray BG (1998) Yellow pinks: interspecific hybridization between Dianthus plumarius and related species with yellow flowers. Sci Hortic 77(3):207–218

    Article  Google Scholar 

  • Lafon-Placette C, Köhler C (2014) Embryo and endosperm, partners in seed development. Curr Opin Plant Biol 17:64–69. doi:10.1016/j.pbi.2013.11.008

    Article  PubMed  Google Scholar 

  • Lafon-Placette C, Köhler C (2016) Endosperm-based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers. Mol Ecol 25(11):2620–2629. doi:10.1111/mec.13552

    Article  PubMed  Google Scholar 

  • Lafon-Placette C, Johannessen IM, Hornslien KS, Ali MF, Bjerkan KN, Bramsiepe J, Glöckle BM, Rebernig CA, Brysting AK, Grini PE (2017) Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proc Natl Acad Sci 114(6):E1027–E1035. doi:10.1073/pnas.1615123114

    Article  CAS  PubMed  Google Scholar 

  • Lim KB, Ramanna MS, De Jong JH, Jacobsen E, van Tuyl JM (2001) Indeterminate meiotic restitution (IMR): a novel type of meiotic nuclear restitution mechanism detected in interspecific lily hybrids by GISH. Theor Appl Genet 103(2–3):219–230. doi:10.1007/s001220100638

    Article  CAS  Google Scholar 

  • McClure BA, Franklin-Tong V (2006) Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 224(2):233–245. doi:10.1007/s00425-006-0284-2

    Article  CAS  PubMed  Google Scholar 

  • Mo X, Gui M, Qu S, Xiong L, Yang M (2006) Polyploid breeding studying of standard carnation (Dianthus caryophyllus L.). Chin Agric Sci Bull 21(11):262–264

    Google Scholar 

  • Murti RH, Kim HY, Yeoung YR (2012) Morphological and anatomical characters of ploidy mutants of strawberry. Int J Agric Biol 14:204–210

    Google Scholar 

  • Nimura M, Kato J, Mii M, Morioka K (2003) Unilateral compatibility and genotypic difference in crossability in interspecific hybridization between Dianthus caryophyllus L. and Dianthus japonicus Thunb. Theoretical and Applied Genetics 106(7):1164–1170. doi:10.1007/s00122-002-1181-0

    Article  CAS  PubMed  Google Scholar 

  • Nimura M, Kato J, Horaguchi H, Mii M, Sakai K, Katoh T (2006a) Induction of fertile amphidiploids by artificial chromosome-doubling in interspecific hybrid between Dianthus caryophyllus L. and D. japonicus Thunb. Breed Sci 56(3):303–310. doi:10.1270/jsbbs.56.303

    Article  Google Scholar 

  • Nimura M, Kato J, Mii M (2006b) Interspecific hybrid production by reciprocal crosses between Dianthus caryophyllus L. and Dianthus×isensis Hirahata et Kitamura. J Hortic Sci Biotechnol 81(6):995–1001. doi:10.1080/14620316.2006.11512188

    Article  CAS  Google Scholar 

  • Nimura M, Kato J, Mii M, Ohishi K (2008) Cross-compatibility and the polyploidy of progenies in reciprocal backcrosses between diploid carnation (Dianthus caryophyllus L.) and its amphidiploid with Dianthus japonicus Thunb. Sci Hortic 115(2):183–189. doi:10.1016/j.scienta.2007.08.017

    Article  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploid incidence and evolution. Annu Rev Genet 34(1):401–437

    Article  CAS  PubMed  Google Scholar 

  • Peloquin SJ, Boiteux LS, Carputo D (1999) Meiotic mutants in potato: valuable variants. Genetics 153(4):1493–1499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu S, Xiong L, Mo X, Wang J, Zhang H, Su Y (2004) Polyploidy induction of Dianthus caryophyllus and variation of the polyploids. J Southwest Agric Univ (Nat Sci) 26(5):609–612

    Google Scholar 

  • Ramanna M, Jacobsen E (2003) Relevance of sexual polyploidization for crop improvement—a review. Euphytica 133(1):3–8

    Article  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243(2):281–296. doi:10.1007/s00425-015-2450-x

    Article  CAS  PubMed  Google Scholar 

  • Sun CQ, Chen FD, Teng NJ, Liu ZL, Fang WM, Hou XL (2010) Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat.) Kitamura and its wild species. Euphytica 171(2):181–192

    Article  Google Scholar 

  • Takamura T, Miyajima I (1996) Colchicine induced tetraploids in yellow-flowered cyclamens and their characteristics. Sci Hortic 65(4):305–312

    Article  CAS  Google Scholar 

  • Van Laere K, França SC, Vansteenkiste H, Van Huylenbroeck J, Steppe K, Van Labeke M-C (2011) Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiol Plant 33(4):1149–1156

    Article  Google Scholar 

  • Van Tuyl JM, De Vries JN, Bino RJ, Kwakkenbos TAM (1989) Identification of 2n-pollen producing interspecific hybrids of Lilium using flow cytometry. Cytologia 54(4):737–745. doi:10.1508/cytologia.54.737

    Article  Google Scholar 

  • Wang J, Xiong L, Qu S, Lu L, Mo X (2005) Evaluation on the resistance of different carnation cultivars to Fusarium oxysporum. Plant Protection 31(1):34–37

    Google Scholar 

  • Wang W, Zhou L, Huang Y, Bao Z, Zhao H (2014) Reproductive barriers in interspecific hybridizations among Chimonanthus praecox (L.) Link, C. salicifolius S. Y. Hu, and C. nitens Oliver from pollen–pistil interaction and hybrid embryo development. Sci Hortic 177:85–91. doi:10.1016/j.scienta.2014.07.040

    Article  Google Scholar 

  • Yagi M, Fujita Y, Yoshimura T, Onozaki T (2007) Comprehensive estimation of polyploidy level in carnation [Dianthus caryophyllus] cultivars by flow cytometry. Bull Natl Inst Floricul Sci 7:9–16

    Google Scholar 

  • Yamada A, Tao R, Sugiura A (2005) Influence of low temperature before flowering on the occurrence of unreduced pollen in Japanese persimmon (Diospyros kaki Thunb.). HortScience 40(1):24–28

    Google Scholar 

  • Yamaguchi M (1989) Basic studies on the flower color breeding of carnations (Dianthus caryophyllus L.). Bull Fac Horticult Minamikyushu Univ 19:1–7

    Google Scholar 

  • Zhang G, Campenot M, McGann L, Cass D (1992) Flow cytometric characteristics of sperm cells isolated from pollen of Zea mays L. Plant Physiol 99(1):54–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Gui M, Zhao D, Chen M, Ju S, Li S, Lu Z, Mo X, Wang J (2013) Study on reproductive barriers in 4×–2× crosses in Dianthus caryophyllus L. Euphytica 189(3):471–483

    Article  CAS  Google Scholar 

  • Zhou X, Mo X, Gui M, Wu X, Jiang Y, Ma L, Shi Z, Luo Y, Tang W (2015) Cytological, molecular mechanisms and temperature stress regulating production of diploid male gametes in Dianthus caryophyllus L. Plant Physiol Biochem 97:255–263. doi:10.1016/j.plaphy.2015.10.003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Engineering Research Center for Ornamental Horticulture (Grant number 2012FU125X10), Chinese Natural Science Foundation (Grant number 31460530), Yunnan Foundation Research Projects for Application (Grant number 2014FA044 and 2016IA001), Yunnan Young Academic and Technical Leader Training (Grant number 2015HB077), Yunnan Science and Technology Leader Training (Grant number 2016HA005).

Author information

Authors and Affiliations

Authors

Contributions

Author contribution

MG and JW designed research. XZ, YS, XY and YZ conducted experiments. SL analysed data. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Min Gui or Jihua Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Su, Y., Yang, X. et al. The biological characters and polyploidy of progenies in hybridization in 4×–2× crosses in Dianthus caryophyllus . Euphytica 213, 118 (2017). https://doi.org/10.1007/s10681-017-1898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1898-0

Keywords

Navigation