Skip to main content
Log in

Evaluation of a durum wheat selection scheme under Mediterranean conditions: adjusting trial locations and replications

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The effectiveness of a cultivar evaluation scheme is impeded by the cost of experimentation. The aim of this study was to explore whether the locations employed in durum wheat evaluation program in Greece constituted a mega-environment (ME) and to adjust the number of trial replications and locations for realizing an optimum heritability (H) of 0.75. The analysis was conducted for grain yield (GY), agronomic and quality parameters in a 10-year (2002–2011) dataset and included a variable across years, number of genotypes and locations. The GGE biplot analyses revealed that trial locations can be considered as a single, complex ME. The existence of the ME was also confirmed by the high H across locations. The number of replications and locations for realizing an optimum H for GY was five replications compared to the four currently used, and five locations in lieu of 3–4 now tested. Plant height in March, final plant height and days to heading required three replications and four locations, winter frost three and five, powdery mildew three and seven, stem rust five and nine, whereas lodging 10 replications and 10 locations, respectively. Regarding quality, thousand-kernel weight required four replications and three locations, whereas vitreous kernel percentage six and eight, grain protein concentration four and seven, black point percentage 17 replications and was of zero H across locations. Finally, for the traits assessed only across locations, ash content required seven, wet gluten content five while gluten index and β-carotene three locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Ash:

Grain ash concentration

BP:

Black point percentage

Carot:

β-Carotene content

DtH:

Days to heading

FPH:

Final plant height

G:

Genotype

GEI:

Genotype × environment interaction

GEI/Gratio :

Sum of squares ratio

GGE biplot:

Genotype and genotype × environment biplot

GI:

Gluten index

G × L:

Genotype × location

GY:

Grain yield

H:

Heritability

Ha :

Heritability across locations

Hw :

Heritability within a trial

L:

Location

Lodg:

Lodging percentage

ME:

Mega-environment

MPH:

Plant height in March

Nl :

Number of locations

NlH75 :

Number of locations to realize H = 0.75

Nr :

Number of replications

NrH75 :

Number of replications to realize H = 0.75

PC:

Grain protein concentration

PM:

Powdery mildew

SR:

Stem rust

SumE :

Sum of squares for E

SumGEI :

Sum of squares for GEI

SSTRMT :

Treatment sum of squares

TKW:

Thousand-kernel weight

VK:

Vitreous kernel percentage

WG:

Wet gluten content

WF:

Winter frost

Y:

Year

References

  • Annicchiarico P (2002) Genotype × environment interaction: Challenges and opportunities for plant breeding and cultivar recommendations. FAO Plant Production and Protection Paper 174. Food and Agriculture Organization of the United Nations, Rome

  • Arief VN, DeLacy IH, Crossa J et al (2015) Evaluating testing strategies for plant breeding field trials: redesigning a CIMMYT international wheat nursery. Crop Sci 55:164–177. doi:10.2135/cropsci2014.06.0415

    Article  Google Scholar 

  • Baxevanos D, Goulas C, Rossi J, Braojos E (2008) Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE biplots. Agron J 100:1230–1236. doi:10.2134/agronj2007.0363

    Article  Google Scholar 

  • Baxevanos D, Tsialtas IΤ, Goulas C (2013) Repeatability and stability analysis for fiber traits in upland cotton (Gossypium hirsutum L.). Aust J Crop Sci 7:1423–1429

    Google Scholar 

  • Bernardo R (2010) Breeding quantitative traits in plants. Stemma Press, Woodbury

    Google Scholar 

  • Berry PM, Sylvester-Bradley R, Berry S (2007) Ideotype design for lodging-resistant wheat. Euphytica 154:165–179. doi:10.1007/s10681-006-9284-3

    Article  Google Scholar 

  • Blanche SB, Myers GO (2006) Identifying discriminating locations for cultivar selection in Louisiana. Crop Sci 46:946–949. doi:10.2135/cropsci2005.0279

    Article  Google Scholar 

  • Blum A, Pnuel Y (1990) Physiological attributes associated with drought resistance of wheat cultivars in a Mediterranean environment. Aust J Agric Res 41:799–810. doi:10.1071/AR9900799

    Article  Google Scholar 

  • Braun HJ, Payne T (2012) Mega-environment breeding. In: Reynolds MP, Pask AJD, Mullan DM (eds) Physiological breeding I: interdisciplinary approaches to improve crop adaptation. CIMMYT, Mexico, pp 6–17

    Google Scholar 

  • Cerón MMC, Martel IS (2003) Effects of powdery mildew severity (Blumeria graminis f. sp. tritici) on breeding lines of durum wheat (Triticum turgidum L. spp. durum) yield in Western Andalusia [Spain]. Span J Agric Res 1:19–26. doi:10.5424/sjar/2003013-30

    Article  Google Scholar 

  • Clarke FR, Clarke JM, McCaig TN, Knox RE, DePauw RM (2006) Inheritance of yellow pigment concentration in seven durum wheat crosses. Can J Plant Sci 86:133–141. doi:10.4141/P05-083

    Article  Google Scholar 

  • Comstock RF, Moll RH (1963) Genotype – environment interactions. In: Hanson WD, Robinson HF (eds), Statistical genetics and plant breeding. NAS-NRC Publication 982, Washigton DC, pp 164–196

  • Dehghani H, Ebadi A, Yousefi A (2006) Biplot analysis of genotype by environment interaction for barley yield in Iran. Agron J 98:388–393. doi:10.2134/agronj2004.0310

    Article  Google Scholar 

  • DeLacy IH, Basford KE, Cooper M, Bull JK, McLaren CG (1996) Analysis of multi-environment trials–a historical perspective. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 39–124

    Google Scholar 

  • Eisemann RL, Cooper M, Woodruff DR (1990) Beyond the analytical methodology, better interpretation and exploitation of GE interaction. In: Kang MS (ed) Genotype-by-environment interaction and plant breeding. Louisiana State University Agricultural Center, Baton Rouge, pp 108–117

    Google Scholar 

  • Fernandez MR, Clarke JM, DePauw RM, Irvine RB, Knox RE (2000) Black point reaction of durum and common wheat cultivars grown under irrigation in southern Saskatchewan. Plant Dis 84:892–894. doi:10.1094/PDIS.2000.84.8.892

    Article  Google Scholar 

  • Frutos E, Galindo MP, Leiva V (2014) An interactive biplot implementation in R for modeling genotype-by-environment interaction. Stoch Environ Res Risk Assess 28:1629–1641. doi:10.1007/s00477-013-0821-z

    Article  Google Scholar 

  • Hadjichristodoulou A (1979) Genetic and environmental effects on vitreousness of durum wheat. Euphytica 28:711–716. doi:10.1007/BF00038938

    Article  Google Scholar 

  • Hellenic Statistical Authority (2016) Annual agricultural statistical survey. Hellenic Republic, http://www.statistics.gr. Accessed 13 July 2016

  • ICC (1994) Standard methods of the International Association for Cereal Chemistry, 4th supplement

  • Institute SAS (2002) JMP statistical discovery software. SAS Inst, Cary

    Google Scholar 

  • Josephides CM (1993) Analysis of adaptation of barley, triticale, durum and bread wheat under Mediterranean conditions. Euphytica 65:1–8. doi:10.1007/BF00022193

    Article  Google Scholar 

  • Koutsika-Sotiriou M, Gogas C, Evgenidis G, Bladenopoulos K (2011) Wheat breeding in Greece. In: Bonjean AP, Angus WJ, van Ginkel M (eds) The world wheat book: a history of wheat breeding, vol 2. Lavoisier Publishing, Paris, pp 239–273

    Google Scholar 

  • Letta T, Tilahun A (2007) Stability analysis for selecting stem rust resistance in some Ethiopian durum wheat varieties. In: African Crop Science Proceedings, El-Minia, Egypt, pp 853–856

  • Nachit M, Baum M, Impiglia A, Ketata H (1995) Studies on some grain quality traits in durum wheat grown in Mediterranean environments. In: Di Fonzo N, Kaan F, Nachit M (eds) Durum wheat quality in the Mediterranean region. CIHEAM, Zaragosa, pp 181–187

    Google Scholar 

  • Papakosta DK, Gagianas AA (1991) Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling. Agron J 83:864–870. doi:10.2134/agronj1991.00021962008300050018x

    Article  CAS  Google Scholar 

  • Pask A, Pietragalla J (2012) Observations of in-season damage. In: Pask AJD, Pietragalla J, Mullan DM, Reynolds MP (eds) Physiological breeding II: A field guide to wheat phenotyping. CIMMYT, Mexico, pp 113–119

    Google Scholar 

  • Rashidi V (2011) Genetic parameters of some morphological and physiological traits in durum wheat genotypes (Triticum durum L.). Afr J Agric Res 6:2285–2288. doi:10.5897/AJAR11.057

    Google Scholar 

  • Rharrabti Y, Villegas D, Royo C, Martos-Núñez V, García Del Moral LF (2003) Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops Res 80:133–140. doi:10.1016/S0378-4290(02)00177-6

    Article  Google Scholar 

  • Savary S, Jouanin C, Félix I, Gourdain E, Piraux F, Willocquet L, Brun F (2016) Assessing plant health in a network of experiments on hardy winter wheat varieties in France: multivariate and risk factor analyses. Eur J Plant Pathol 146:757–778. doi:10.1007/s10658-016-0955-1

    Article  CAS  Google Scholar 

  • Symeonidis K, Mavromatis T, Kotzamanidis S (2012) Investigating with the CERES-wheat model the impacts of soil and climate factors on durum wheat performance and earliness in northern Greece. In: Helmis CG Nastos PT (eds) Advances in meteorology, climatology and atmospheric physics. Springer Atmospheric Sciences. Springer, New York, pp 743–749

  • Van Sanford DA, MacKown CT (1986) Variation in nitrogen use efficiency among soft red winter wheat genotypes. Theor Appl Genet 72:158–163. doi:10.1007/BF00266987

    Article  PubMed  Google Scholar 

  • Vida G, Szunics L, Veisz O, Bedő Z, Láng L, Árendás T, Bónis P, Rakszegi M (2014) Effect of genotypic, meteorological and agronomic factors on the gluten index of winter durum wheat. Euphytica 197:61–71. doi:10.1007/s10681-013-1052-6

    Article  CAS  Google Scholar 

  • Yan W (2016) Analysis and handling of G × E in a practical breeding program. Crop Sci 56:2106–2118. doi:10.2135/cropsci2015.06.0336

    Article  Google Scholar 

  • Yan W, Kang MS (2003) GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press LLC, Boca Raton

    Google Scholar 

  • Yan W, Tinker NA (2005) An integrated biplot analysis system for displaying, interpreting, and exploring genotype × environment interaction. Crop Sci 45:1004–1016. doi:10.2135/cropsci2004.0076

    Article  Google Scholar 

  • Yan W, Hunt LA, Sheng Q, Szlavnics Z (2000) Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci 40:597–605. doi:10.2135/cropsci2000.403597x

    Article  Google Scholar 

  • Yan W, Kang MS, Ma B, Woods S, Cornelius PL (2007) GGE biplot vs. AMMI analysis of genotype-by-environment data. Crop Sci 47:643–655. doi:10.2135/cropsci2006.06.0374

    Article  Google Scholar 

  • Yan W, Frégeau-Reid J, Martin R, Pageau D, Mitchell-Fetch J (2015) How many test locations and replications are needed in crop variety trials for a target region? Euphytica 202:361–372. doi:10.1007/s10681-014-1253-7

    Article  Google Scholar 

  • Zuber U, Winzeler H, Messmer MM, Keller M, Keller B, Schmid JE, Stamp P (1999) Morphological traits associated with lodging resistance of spring wheat (Triticum aestivum L.). J Agron Crop Sci 182:17–24. doi:10.1046/j.1439-037x.1999.00251.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetrios Baxevanos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baxevanos, D., Korpetis, E., Irakli, M. et al. Evaluation of a durum wheat selection scheme under Mediterranean conditions: adjusting trial locations and replications. Euphytica 213, 82 (2017). https://doi.org/10.1007/s10681-017-1871-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-1871-y

Keywords

Navigation