Skip to main content

Advertisement

Log in

Genome-wide association mapping of provitamin A carotenoid content in cassava

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Global efforts are underway to develop staple crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency, which is widespread among resource-poor farmers in the developing world. As a staple crop for more than 500 million people in sub-Saharan Africa, cassava (Manihot esculenta Crantz) enriched with provitamin A carotenoids could have immense nutritional impact. To this effort, a genome-wide association study (GWAS) was conducted with the aim of identifying genomic regions controlling variation for carotenoid concentration in cassava as a basis for undertaking systematic genetic improvement for carotenoid content. A high throughput genotyping-by-sequencing platform was used to genotype a diverse association panel of 591 genotypes and identified 179,310 single nucleotide polymorphisms (SNPs) distributed across the cassava genome. A genomic region stretching 1.37 Mb on chromosome 1 was identified with four SNPs significantly associated with carotenoid content in cassava. A survey of cassava genome sequence v6.1 positioned these SNPs in the vicinity of Manes.01G124200.1 locus, which is a known gene responsible for increase in accumulation of provitamin A carotenoids in cassava roots. This study provides one of the pioneer insights into the practical application of GWAS for dissecting the genetic basis of nutritional traits in cassava. Findings presented herein offer practical grounds for improving carotenoid content in cassava through marker-assisted breeding and genomic selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Haleem H, Bowman J, Giroux M, Kanazin V, Talbert H, Surber L, Blake T (2010) Quantitative trait loci of acid detergent fiber and grain chemical composition in hulled x hull-less barley. Euphytica 172:405–418

    Article  CAS  Google Scholar 

  • Akinwale MG, Aladesanmwa RD, Akinyele BO, Dixon AGO, Odiyi AC (2010) Inheritance of ß-carotene in cassava (Manihot esculenta Crantz). Int J Genet Mol Biol 2:198–201

    Google Scholar 

  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden rice: introducing the beta-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506–510

    Google Scholar 

  • Bishop DT, Williamson JA (1990) The power of identity-by-state linkage methods of analysis. Am J Hum Genet 46:254–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Browning BL, Browning SR (2013) Improving the accuracy and efficiency of identity by descent detection in population data. Genetics 194:459–471

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T (2010) Cassava: the drought, war and famine crop in a changing world. Sustainability 2:3572–3607

    Article  Google Scholar 

  • Ceballos H, Iglesias C, Pérez JC, Dixon AGO (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:503–516

    Article  CAS  PubMed  Google Scholar 

  • Ceballos H, Kulakow P, Hershey C (2012) Cassava breeding: current status, bottlenecks and the potential of biotechnology tools. Trop Plant Biol 5:73–87

    Article  CAS  Google Scholar 

  • Ceballos H, Morante N, Sánchez T et al (2013) Rapid cycling recurrent selection for increased carotenoids content in cassava roots. Crop Sci 53:23–42

    Article  Google Scholar 

  • Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH (2015) Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128:1647–1667

    Article  PubMed  PubMed Central  Google Scholar 

  • Clewer AG, Scarisbrick DH (2001) Practical statistics and experimental design for plant crop science. Wiley, Chichester

    Google Scholar 

  • Crossa J, Beyene Y, Kassa S et al (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3—Genes Genom Genet 3:1903–1926

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Dellaporta S, Wood J, Hicks J (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology 1:460–483

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgerton MD (2009) Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiol 149:7–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS One 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ersoz ES, Yu J, Buckler ES (2009) Applications of linkage disequilibrium and association mapping in maize. In: Kritz AL, Larkins BA (eds) Molecular genetic approaches to maize improvement, vol 63. Springer, Berlin, pp 173–190

    Chapter  Google Scholar 

  • Esuma W, Rubaihayo P, Pariyo A et al (2012) Genetic diversity of provitamin A cassava in Uganda. J Plant Stud 1:60–71

    Article  Google Scholar 

  • Esuma W, Kawuki SR, Herselman L, Labuschagne M (2016) Stability and genotype by environment interaction of provitamin A carotenoid and dry matter content in cassava in Uganda. Breed Sci. doi:10.1270/jsbbs.16004

    Google Scholar 

  • FAOSTAT (2009) Why cassava? http://www.fao.org/ag/AGP/agpc/gcds/index_en. Accessed on 4 Jan, 2016

  • Fu Z, Yan J, Zheng Y, Warburton ML, Crouch JH, Li JS (2010) Nucleotide diversity and molecular evolution of the PSY1 gene in Zea mays compared to some other grass species. Theor Appl Genet 120:709–720

    Article  CAS  PubMed  Google Scholar 

  • Gegios A, Amthor R, Maziya-Dixon B et al (2010) Children consuming cassava as a staple food are at risk for inadequate zinc, iron, and vitamin A intake. Plant Foods Hum Nutr 65:64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliano G (2014) Plant carotenoids: genomics meets multi-gene engineering. Curr Opin Plant Biol 19:111–117

    Article  CAS  PubMed  Google Scholar 

  • Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, Buckler ES (2014) TASSEL-GBS: a high capacity genotyping by sequencing analysis pipeline. PloS One 9:e90346

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodstein DM, Shu S, Howson R et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  Google Scholar 

  • Grady BJ, Torstenson ES, Ritchie MD (2011) The effects of linkage disequilibrium in large scale SNP datasets for MDR. BioData Min 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  • He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci 5:484

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill WG, Weir BS (1988) Variances and covariances of squared linkage disequilibria in finite populations. Theor Popul Biol 33:54–78

    Article  CAS  PubMed  Google Scholar 

  • Kawano K (1980) Cassava. In: Fehr WR, Hadley HH (eds) Hybridisation of crop plants. America Society of Agronomy and Crop Science Society of America, Madison, pp 225–233

    Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:1–9

    Article  Google Scholar 

  • Li M, Liu X, Bradbury P et al (2014) Enrichment of statistical power for genome-wide association studies. BMC Biol 12:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipka AE, Tian F, Wang Q et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Manson J, Greiner T, Shrimpton R, Sanders D, Yukich J (2014) Vitamin A policies need rethinking. Int J Epidemiol. doi:10.1093/ije/dyu194

    Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    Article  CAS  PubMed  Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochem Cycles 22:1–19

    Article  Google Scholar 

  • Montagnac AJ, Davis CR, Tanumuhardjo SA (2009) Nutritional value of cassava for use as a staple food and recent advances for improvement. Compr Rev Food Sci F 8:181–194

    Article  CAS  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassar NMA (2003) Cassava, Manihot esculenta Crantz genetic resources: anatomy of a diversity center. Genet Mol Res 2:214–222

    PubMed  Google Scholar 

  • Nassar NMA, Schwartz CA, Junior OP (2007) Cassava diversity in Brazil: the case of carotenoid-rich landraces. Genet Mol Res 6:116–121

    CAS  PubMed  Google Scholar 

  • Njoku DN, Vernon G, Egesi CN et al (2011) Breeding for enhanced ß-carotene content in cassava: constraints and accomplishments. J Crop Improv 25:560–571

    Article  CAS  Google Scholar 

  • Njoku DN, Gracen VE, Offei SK, Asante IK, Egesi CN, Kulakow P, Ceballos H (2015) Parent-offspring regression analysis for total carotenoids and some agronomic traits in cassava. Euphytica 206:657–666

    Article  CAS  Google Scholar 

  • Okogbenin E, Porto MCM, Egesi C, Mba C, Espinosa E, Santos LG (2007) Marker-assisted introgression of resistance to cassava mosaic disease into Latin American germplasm for the genetic improvement of cassava in Africa. Crop Sci 47:1895–1904

    Article  Google Scholar 

  • Oliveira EJ, Resende MDV, Silva Santos V et al (2012) Genome-wide selection in cassava. Euphytica 187:263–276

    Article  CAS  Google Scholar 

  • Owens BF, Lipka AE, Magallanes-Lundback M et al (2014) A foundation for provitamin A biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716

    Article  PubMed  PubMed Central  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S et al (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  • Pasam RK, Sharma R, Malosetti M, van Eeuwijk FA, Haseneyer G, Kilian B, Graner A (2012) Genome-wide association studies for agronomical traits in a world wide spring barley collection. BMC Plant Biol 12:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson G, Dong Y, Horbach C, Fu Y-B (2014) Genotyping-by-sequencing for plant genetic diversity analysis: a lab guide for SNP genotyping. Diversity 6:665–680

    Article  CAS  Google Scholar 

  • Pfeiffer WH, McClafferty B (2007) HarvestPlus: breeding crops for better nutrition. Crop Sci 47:88–105

    Article  Google Scholar 

  • Poland J, Endelman J, Dawson J et al (2012) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genom J 5:103–113

    Article  CAS  Google Scholar 

  • Prochnik S, Marri PR, Desany B et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rabbi IY, Hamblin MT, Kumar PL, Gedil MA, Ikpan AS, Jannink JL, Kulakow PA (2014) High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding. Virus Res 186:87–96

    Article  CAS  PubMed  Google Scholar 

  • Remington D, Thornsberry JM, Matsuoka Y et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romay MC, Millard MJ, Glaubitz JC et al (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:55

    Article  Google Scholar 

  • Salvador EM, Steenkamp V, McCrindle CME (2014) Production, consumption and nutritional value of cassava (Manihot esculenta Crantz) in Mozambique: an overview. J Agric Biotechnol Sustain Dev 6:29–38

    Article  Google Scholar 

  • Sánchez T, Chávez AL, Ceballos H, Rodriguez-Amaya DB, Nestel P, Ishitani M (2006) Reduction or delay of post-harvest physiological deterioration in cassava roots with higher carotenoid content. J Sci Food Agric 86:634–639

    Article  Google Scholar 

  • Semagn K, Bjørnstad A, Xu Y (2010) The genetic disection of quantitative traits in crops. Electro J Biotechn 13:1–45

    Google Scholar 

  • Shumskaya M, Wurtzel ET (2013) The carotenoid biosynthetic pathway: thinking in all dimensions. Plant Sci 208:58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumskaya M, Bradbury LMT, Monaco RR, Wurtzel ET (2012) Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation and activity. Plant Cell 24:3725–3741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson K, Amthor R, Mallowa S et al (2010) Consuming cassava as a staple food places children 2–5 years old at risk for inadequate protein intake, an observational study in Kenya and Nigeria. Nutr J 9:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Suwarno WB, Pixley KV, Palacios-Rojas N, Kaeppler SM, Babu R (2015) Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor Appl Genet 128:851–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swarts K, Li H, Romero Navarro JA et al (2014) Novel methods to optimize genotypic imputation for low-coverage, next-generation sequence data in crop plants. Plant Genome 7:1–12

    Article  CAS  Google Scholar 

  • Talsma EF, Melse-Boonstra A, de Kok BP, Mbera GN, Mwangi AM, Brouwer ID (2013) Biofortified cassava with pro-vitamin A is sensory and culturally acceptable for consumption by primary school children in Kenya. PloS One 8:e73433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan SL (2015) Cassava—silently, the tuber fills: the lowly cassava, regarded as a poor man’s crop, may help save the world from the curse of plastic pollution. Utar Agric Sci J 1:12–24

    Google Scholar 

  • Turner SD (2014) qqman: an R package for visualizing GWAS results using Q-Q and Manhattan plots. http://dx.doi.org/10.1101/005165. Accessed on 12 June, 2014

  • Vazquez A, Bates D, Rosa G, Gianola D, Weigel K (2010) Technical note: an R package for fitting generalized linear mixed models in animal breeding. J Anim Sci 88:497–504

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Yan J, Zhao J, Song W, Zhang X, Xiao Y, Zheng Y (2012) Genome-wide association study (GWAS) of resistance to head smut in maize. Plant Sci 196:125–131

    Article  CAS  PubMed  Google Scholar 

  • Weir BS (2008) Linkage disequilibrium and association mapping. Ann Rev Genomics Hum Genet 9:129–142

    Article  CAS  Google Scholar 

  • Welsch R, Arango J, Bar C et al (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2009) Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO global database on Vitamin A deficiency. World Health Organisation, Geneva

    Google Scholar 

  • Yuan-yuan L, Hong-jian T, Xiang-qian Z et al (2014) Molecular improvement of grain weight and yield in rice by using GW6 gene. Rice Sci 21:127–132

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the East African Agricultural Productivity Project (EAAPP) for funding activities for field trials for this research. All the genotyping and bioinformatics analysis were done with support from the Buckler Laboratory at Cornell University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Williams Esuma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Supplementary material 2 (DOCX 11 kb)

10681_2016_1772_MOESM3_ESM.tiff

Supplementary Fig. 1 Scatter plot of 591 genotypes based on principal component analysis using GAPIT programme (Lipka et al. 2012). PC1 = principal component 1; PC2 = principal component 2. Supplementary material 3 (TIFF 125 kb)

10681_2016_1772_MOESM4_ESM.tiff

Supplementary Fig. 2 Plot of genome-wide linkage disequilibrium decay based on adjacent pairwise genetic and physical distance. Pairs with distance >60 kb are not shown. Supplementary material 4 (TIFF 357 kb)

10681_2016_1772_MOESM5_ESM.tiff

Supplementary Fig. 3 Manhattan plots for genome-wide diagnosis of association signals based on means of total carotenoid content. P and Q are linkage groups containing unanchored scaffolds in the cassava genome sequence v6.1. Horizontal blue and red lines are the suggestive and 5 % Bonferroni threshold lines, respectively. Supplementary material 5 (TIFF 486 kb)

10681_2016_1772_MOESM6_ESM.tiff

Supplementary Fig. 4 Manhattan plot for genome-wide diagnosis of association signals based and root flesh colour. P and Q are linkage groups containing unanchored scaffolds in the cassava genome sequence v6.1. Horizontal blue and red lines are the suggestive and 5 % Bonferroni threshold lines, respectively. Supplementary material 6 (TIFF 461 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esuma, W., Herselman, L., Labuschagne, M.T. et al. Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica 212, 97–110 (2016). https://doi.org/10.1007/s10681-016-1772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1772-5

Keywords

Navigation