Skip to main content
Log in

Localization of the powdery mildew resistance gene Pm07J126 in wheat (Triticum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Powdery mildew (Pm), caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most serious diseases of common wheat (Triticum aestivum L.) in many regions of the world. Rapid loss of resistance caused by pathogen virulence requires continual improvement of Pm resistance through utilization of novel resistance genes. Pm07J126, in wheat line 07jian126, is a dominant resistance gene, conferring immunity to the prevailing Bgt population in Sichuan province. Previous studies showed that Pm07J126 might be derived from rye (Secale cereale L.) and that it was closely linked with SSR marker barc183. In this study, we localized Pm07J126 to the distal end of chromosome 6DS based on markers barc183 and cfd135. Collinearity analysis of wheat, Brachypodium and rice helped to identify an sequence tagged site marker in close proximity to barc183 in chromosome bin 6DS6-0.99-1.00. Marker Xcib9 that co-segregated with Pm07J126 should be useful for marker-assisted selection in wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Cui F, Fan X, Zhao C, Zhang W, Chen M, Ji J, Li J (2014) A novel genetic map of wheat: utility for mapping QTL for yield under different nitrogen treatments. BMC Genet 15:57

    Article  PubMed Central  PubMed  Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Article  Google Scholar 

  • Friebe B, Gill BS, Tuleen NA, Cox TS (1995) Registration of KS93WGRC28 powdery mildew resistant T6BS.6RL wheat germplasm. Crop Sci 35:1237

    Article  Google Scholar 

  • Gawroński P, Schnurbusch T (2012) High-density mapping of the earliness per se-3Am (Eps-3A m) locus in diploid einkorn wheat and its relation to the syntenic regions in rice and Brachypodium distachyon L. Mol Breed 30:1097–1108

    Article  Google Scholar 

  • Griffey CA, Das MK, Stromberg EL (1993) Effectiveness of adult-plant resistance in reducing grain yield loss to powdery mildew in winter wheat. Plant Dis 77:618–622

    Article  Google Scholar 

  • Gu YQ, Ma Y, Huo N, Vogel JP, You FM, Lazo GR, Nelson WM, Soderlund C, Dvorak J, Anderson OD, Luo MC (2009) A BAC-based physical map of Brachypodium distachyon and its comparative analysis with rice and wheat. BMC Genomics 10:496

    Article  PubMed Central  PubMed  Google Scholar 

  • Huo N, Vogel JP, Lazo GR, You FM, Ma Y, McMahon S, Dvorak J, Anderson OD, Luo MC, Gu YQ (2009) Structural characterization of Brachypodium genome and its syntenic relationship with rice and wheat. Plant Mol Biol 70:47–61

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Kumar S, Mohan A, Balyan HS, Gupta PK (2009) Orthology between genomes of Brachypodium, wheat and rice. BMC Res Notes 2:93

    Article  PubMed Central  PubMed  Google Scholar 

  • Kumar S, Balyan HS, Gupta PK (2012) Comparative DNA sequence analysis involving wheat, Brachypodium and rice genomes using mapped wheat ESTs. Triticeae Genomics Genet 3(3):25–37

    Google Scholar 

  • Limpert E, Felsenstein FG, Andrivon D (1987) Analysis of virulence in populations of wheat powdery mildew in Europe. J Phytopathol 120:1–8

    Article  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing linkage maps with MAPMAKER/EXP version 3.0. Whitehead Institute Technical Report, Cambridge, MA

  • Liu Z, Zhu J, Cui Y, Liang Y, Wu H, Song W, Liu Q, Yang T, Sun Q, Liu Z (2012) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theor Appl Genet 124:1014–1049

    Google Scholar 

  • Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, König S, Kugler K, Scholz U, Hackauf B, Korzun V, Schön CC, Doležel J, Bauer E, Mayer KF, Stein N (2013) Reticulate evolution of the rye genome. Plant Cell 25:3685–3698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayer KF, Martis M, Hedley PE, Šimková H, Liu H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2012) Catalogue of gene symbols for wheat: 2012 supplement. Annu Wheat Newsl 58:264–265

  • Mohler V, Bauer C, Schweizer G, Kempf H, Hartl L (2013) Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet 54:259–263

    Article  CAS  PubMed  Google Scholar 

  • Morgounov A, Tufan HA, Sharma R, Akin B, Bagci A, Braun HJ, Kaya Y, Keser M, Payne TS, Sonder K, McIntosh R (2012) Global incidence of wheat rusts and powdery mildew during 1969–2010 and durability of resistance of winter wheat variety Bezostaya 1. Eur J Plant Pathol 132:323–340

    Article  Google Scholar 

  • Paux E, Sourdille P, Salse S, Saintenac S, Choulet F et al (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Echalier B, Chao S, Lazo GR, Butler GE et al (2004) A chromosome bin map of 16,000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang XE (2011) Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123:207–218

    Article  PubMed  Google Scholar 

  • Rota ML, Sorrells ME (2004) Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat. Funct Integr Genomics 4:34–46

    Article  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratoty manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sorrells ME, Rota ML, Bermudez-Kandianis CE, Greene RA, Kantety R et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi LL, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  CAS  PubMed  Google Scholar 

  • The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Xue F, Ji W, Wang C, Zhang H, Yang B (2012) High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor Appl Genet 124:1549–1560

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Long H, Yang H, Zhang J, Deng G, Pan Z, Zhang E, Yu M (2012) Molecular detection of rye (Secale cereale L.) chromatin in wheat line 07jian126 (Triticum aestivum L.) and its association to wheat powdery mildew resistance. Euphytica 186:247–255

    Article  Google Scholar 

  • Zhang XJ, Zeng QD, Duan YH, Yuan FP, Shi JD, Wang QL, Qu JH, Huang LL, Kang ZS (2013) Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS One 8(3):e57885. doi:10.1371/journal.pone.0057885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Main Direction Program of Knowledge and Innovation of the Chinese Academy of Sciences (No. KSCX3-EW-N-02-2), the Breeding Program of Crops, Livestock and Poultry of Sichuan Province, and the Strategic Leading Science & Technology Program (No. XDA08020205).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoqun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Long, H., Deng, G. et al. Localization of the powdery mildew resistance gene Pm07J126 in wheat (Triticum aestivum L.). Euphytica 205, 691–698 (2015). https://doi.org/10.1007/s10681-015-1388-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1388-1

Keywords

Navigation