Skip to main content
Log in

Constitution of resistance to common cutworm in terms of antibiosis and antixenosis in soybean RIL populations

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Common cutworm (CCW; Spodoptera litura Fabricius) is a major leaf-feeding pest in Asia. The focus of this study was to explore the genetic mechanism for resistance to CCW in terms of antibiosis and antixenosis through mapping QTL (Quantitative trait locus/loci) in soybean using two recombinant inbred line populations. Larva weight (LW) and pupa weight (PW) were evaluated as indicators for antibiosis and damaged leaf percentage as the indicator for antixenosis to CCW. The obvious transgressive segregation indicated a complementary genetic status between the parents. The genetic structure for antibiosis and antixenosis was similar, about 51.1–75.7 % of the phenotypic variation (PV) accounted for by genetic variation, where 42.2–60.3 %, or the majority, was explained by the collective unmapped minor QTL. And, 0–6 additive QTL each explained 0.0–11.8 % in a total of 0.0–27.4 % of PV, and 0–3 epistatic QTL pairs each explained 0.0–7.6 % in a total of 0.0–14.0 % of PV. However, the detected QTL compositions for antibiosis and antixenosis were quite different with only one QTL qCCW10_1 shared by both antibiosis and antixenosis with 8.9–11.8 and 4.7 % contribution to PV, respectively. Within antibiosis between LW and PW, the detected QTL overlapped (r = 0.53–0.78). Among the detected QTL, qCCW6_1, qCCW10_1 and qCCW12_2 were the major contributors to antibiosis, and qCCW10_1, qCCW10_2 and qCCW12_1 the major contributors to antixenosis. Since only some major QTL could be used for marker-assisted breeding, the main concern is how to use the large amount of undetected minor QTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth EA, Yendrek CR, Skoneczka JA, Long SP (2012) Accelerating yield potential in soybean: potential targets for biotechnological improvement. Plant Cell Environ 35:38–52

    Article  CAS  PubMed  Google Scholar 

  • All JN, Boerma HR, Todd JW (1989) Screening soybean genotypes in the greenhouse for resistance to insects. Crop Sci 29:1156–1159

    Article  Google Scholar 

  • Armes NJ, Wightman JA, Jadhav DR, Range Rao GV (1997) Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pesticide Sci 50:240–248

    Article  CAS  Google Scholar 

  • Bae SD, Park KB, Oh YJ (1997) Effects of temperature and food source on the egg and larva development of tobacco cutworm, Spodoptera litura Fabricius. Korean J Appl Entomol 36:48–54

    Google Scholar 

  • Cardona EV, Ligat CS, Subang MP (2007) Life history of common cutworm, Spodoptera Litura Fabricius (Noctuidae: Lepidoptera) in Benguet. BSU Res J 56:73–84

    Google Scholar 

  • Cui ZL, Gai JY, Ji DF, Ren ZJ (1997) A study on leaf-feeding insect species on soybeans in Nanjing area. Soybean Sci 16:12–20 (in Chinese)

    Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stages of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–930

    Article  Google Scholar 

  • Fu SX, Wang H, Wu JJ, Liu H, Gai JY, Yu DY (2007) Mapping insect resistance QTL of soybean with RIL population. Hereditas 29:1139–1143 (in Chinese)

    Google Scholar 

  • Gai JY, Chen L, Zhang YH, Zhao TJ, Xing GN, Xing H (2012) Genome-wide genetic dissection of germplasm resources and implications for breeding by design in soybean. Breed Sci 61:495–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hammond RB, Pedigo LP (1982) Determination of yield loss relationships for two soybean defoliators by using simulated insect defoliation techniques. J Econ Entomol 75:102–107

    Google Scholar 

  • Hanson HL, Robinson HF, Comstock RE (1956) Biometrical studies of yield in segregating populations of Korean Lespodeza. Agron J 48:268–272

    Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Hulburt DJ, Boerma HR, All JN (2004) Effect of pubescence tip on soybean resistance to lepidopteran insects. J Econ Entomol 97:621–627

    Article  PubMed  Google Scholar 

  • Kanno H (1996) Role of leaf pubescence in soybean resistance to the false melon beetle, Atrachya menetriesi Faldermann (Coleoptera: Chrysomelidae). Appl Entomol Zool 31:597–603

    Google Scholar 

  • Kenty MM, Hinson K, Quesenberry KH, Wofford DS (1996) Inheritance of resistance to the soybean looper in soybean. Crop Sci 36:1532–1537

    Article  Google Scholar 

  • Kogan M, Ortman EF (1978) Antixenosis—a new term proposed to define Painter’s ‘nonpreference’ modality of resistance. Bull Entomol Soc Am 24:175–176

    Google Scholar 

  • Komatsu K, Okuda S, Takahashi M, Matsunaga R (2004) Antibiotic effect of insect-resistance soybean on common cutworm (Spodoptera litura) and its inheritance. Breed Sci 54:27–32

    Article  Google Scholar 

  • Komatsu K, Okuda S, Takahashi M, Matsunaga R, Nakazawa Y (2005) QTL mapping of antibiosis resistance to common cutworm (Spodoptera litura Fabricius) in soybean. Crop Sci 45:2044–2048

    Article  CAS  Google Scholar 

  • Korir PC, Qi B, Wang YF, Zhao TJ, Yu DY, Chen SY, Gai JY (2011) A study on relative importance of additive, epistasis and unmapped QTL for aluminium tolerance at seedling stage in soybean. Plant Breed 130:551–562

    Article  CAS  Google Scholar 

  • Korir PC, Zhang J, Wu KJ, Zhao TJ, Gai JY (2013) Association mapping combined with linkage analysis for aluminum tolerance among soybean cultivars released in Yellow and Changjing River Valleys in China. Theor Appl Genet 126:1659–1675

    Google Scholar 

  • Lambert L, Kilen TC (1984a) Multiple insect resistance in several soybean genotypes. Crop Sci 24:887–890

    Article  Google Scholar 

  • Lambert L, Kilen TC (1984b) Influence of three soybean genotypes and their F1 intercrosses in the development of five insect species. J Econ Entomol 77:622–625

    Google Scholar 

  • Lambert L, Beach RM, Kilen TC, Todd JW (1992) Soybean pubescence and its influence on larvae development and oviposition preference of lepidopterous insect. Crop Sci 32:463–466

    Article  Google Scholar 

  • Lee GH, Bae SD, Kim HJ, Park ST, Choi MY (2006) Economic injury levels for the common cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) on soybean. Korean J Appl Entomol 45:333–337

    Google Scholar 

  • Li Y, Hill CB, Carlson SR, Diers BW, Hartman GL (2007) Soybean aphid resistance in the soybean cultivars Dowling and Jackson map to linkage group M. Mol Breed 19:25–34

    Article  CAS  Google Scholar 

  • Mahanil S, Attajarusit J, Stout MJ, Thipyapong P (2008) Overexpression of tomato polyphenol oxidase increase resistance to common cutworm. Plant Sci 174:456–466

    Article  CAS  Google Scholar 

  • Muola A, Mutikainen P, Laukkanen L, Lilley M, Leimu R (2010) Genetic variation in herbivore resistance and tolerance: the role of plant life-history stage and type of damage. J Evol Biol 23:2185–2196

    Article  CAS  PubMed  Google Scholar 

  • Mwololo JK, Mugo SN, Tefera T, Okori P, Munyiri SW, Semagn K, Otim M, Beyene Y (2012) Resistance of tropical maize genotypes to the larger grain borer. J Pest Sci 85:267–275

    Article  Google Scholar 

  • N’Guessan M, Hartnett DC (2011) Differential responses to defoliation frequency in little bluestem (Schizachyrium scoparium) in tallgrass prairie: implications for herbivory tolerance and avoidance. Plant Ecol 212:1275–1285

    Article  Google Scholar 

  • Narvel JM, Walker DR, Rector BG, All JN, Parrott WA, Boerma HR (2001) A retrospective DNA marker assessment of the development of insect resistant soybean. Crop Sci 41:1931–1939

    Article  CAS  Google Scholar 

  • Oki N, Komatsu K, Sayama T, Ishimoto M, Takahashi M, Takahashi M (2012) Genetic analysis of antixenosis resistance to the common cutworm (Spodoptera litura Fabricius) and its relationship with pubescence characteristics in soybean (Glycine max (L.) Merr.). Breed Sci 61:608–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Painter RH (1941) The economic value and biological significance of insect resistance in plants. J econ entomol 34:358–367

    Google Scholar 

  • Ramakrishnan N, Saxena VS, Dhingra S (1984) Insecticide resistance in the population of Spodoptera litura (Fabricius) in Andhra Pradesh. Pesticides. 18:23–27

  • Rector BG, All JN, Parrott WA, Boerma HR (1998) Identification of molecular markers linked to quantitative trait loci for soybean resistance to corn earworm. Theor Appl Genet 96:786–790

    Article  CAS  Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (1999) Quantitative trait loci for antixenosis resistance to corn earworm in soybean. Crop Sci 39:531–538

    Article  Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (2000) Quantitative trait loci for antibiosis resistance to corn earworm in soybean. Crop Sci 40:233–238

    Article  Google Scholar 

  • Rowan GB, Boerma HR, All JN, Todd J (1991) Soybean cultivar resistance to defoliating insects. Crop Sci 31:678–682

    Google Scholar 

  • SAS Institute, Inc. (2004) SAS user’s guide. SAS Institute Inc., Cary

    Google Scholar 

  • Sawada Y, Yoshinaga N, Fujisaki K, Nishida R, Kuwahara Y, Mori N (2006) Absolute configuration of volicitin from the regurgitant of lepidopteran caterpillars and biological activity of volicitin-related compounds. Biosci Biotechnol Biochem 70:2185–2190

    Article  CAS  PubMed  Google Scholar 

  • Schmelz EA, Alborn HT, Tumlinson JH (2003) Synergistic interactions between volicitin, jasmonic acid and ethylene mediate insect-induces volatile emission in Zea mays. Physiol Plant 117:403–412

    CAS  PubMed  Google Scholar 

  • Simon M, Loudet O, Durand S, Berard A, Brunel D, Sennesal FX, Durand-Tardif M, Pelletier G, Camilleri C (2008) Quantitative trait loci mapping in five new large recombinant inbred line populations of Arabidopsis thaliana genotyped with consensus single-nucleotide polymorphism markers. Genetics 178:2253–2264

    Article  CAS  PubMed  Google Scholar 

  • Slansky F, Scriber JM (1985) Food consumption and utilization. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 3. Pergamon Press, Oxford, pp 87–163

    Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Stevenson PC, Blaney WM, Simmonds MSJ, Wightman JA (1993) The identification and characterization of resistance in wild species of Arachis L. to Spodoptera litura Fab. (Lepidoptera: noctuidae). Bull Entomol Res 83:421–429

    Article  Google Scholar 

  • Su CF, Zhao TJ, Gai JY (2010) Simulation comparisons of effectiveness among QTL mapping procedures of different statistical genetic models. Acta Agron Sin 36:1100–1107

    Article  CAS  Google Scholar 

  • Sun ZD, Gai JY (2000) Studies on the inheritance of resistance to cotton worm Prodenia litura (Fabricius). Acta Agron Sin 26:341–346 (in Chinese)

    Google Scholar 

  • Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: new tools for an old science. Biotechnology 7:257–264

    Article  CAS  Google Scholar 

  • Terry LI, Chase K, Jarvik T, Orf J (2000) Soybean quantitative trait loci for resistance to insects. Crop Sci 40:375–382

    Article  CAS  Google Scholar 

  • Van Duyn JW, Turnipseed SG, Maxwell JD (1971) Resistance in soybeans to the Mexican bean beetle: source of resistance. Crop Sci 11:572–573

    Article  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0 software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Walker D, Boerma HR, All J, Parrott W (2002) Combining cry1Ac with QTL alleles from PI229358 to improve soybean resistance to lepidopteran pests. Mol Breed 9:43–51

    Article  CAS  Google Scholar 

  • Wang YF (2009) Genomic characterization of simple sequence repeats and establishment, integration and application of high density genetic linkage map in soybean. PhD dissertation, Nanjing Agricultural University, Nanjing, People’s Republic of China (in Chinese)

  • Wang SC, Basten CJ, Zeng ZB (2006) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 15 June 2006

  • Wang H, Gao ZJ, Fan R, Zhang YS, Wu Q, Yu DY (2011) Evaluation of resistance of soybean germplasm to common cutworm based on three resistance mechanisms. Soybean Sci 30:8–15 (in Chinese)

    Google Scholar 

  • Wilcox JR (2004) World distribution and trade of soybean. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. ASA-CSSA-SSSA, Madison, pp 1–14

    Google Scholar 

  • Wu JJ, Wu Q, Wu QJ, Gai JY, Yu DY (2008) Constitutive overexpression of AOS-like gene from soybean enhanced tolerance to insect attack in transgenic tobacco. Biotechnol Lett 30:1693–1698

    Article  CAS  PubMed  Google Scholar 

  • Xing GN, Zhou B, Zhao TJ, Yu DY, Xing H, Chen SY, Gai JY (2008) Mapping QTL of resistance to Megacota cribraria (Fabricius) in soybean. Acta Agron Sin 34:361–368 (in Chinese)

    CAS  Google Scholar 

  • Xing GN, Zhou B, Wang YF, Zhao TJ, Yu DY, Chen SY, Gai JY (2012) Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean. Theor Appl Genet 125:859–875

    Article  PubMed  Google Scholar 

  • Yang J, Zhu J, Williams RW (2007) Mapping the genetic architecture of complex traits in experimental populations. Bioinformatics 23:1527–1536

    Article  CAS  PubMed  Google Scholar 

  • Zhang WK, Wang YJ, Zhang JS, Luo GZ, He CY, Gai JY, Wu XL, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max (L.) Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program of China (2009CB1184, 2010CB1259, 2011CB1093), the National Hightech R & D Program of China (2009AA1011), the Natural Science Foundation of China (31071442, 30900902), the MOA Public Profit Program (200803060), and the MOE 111 Project (B08025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Gai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Xing, G., Wang, Y. et al. Constitution of resistance to common cutworm in terms of antibiosis and antixenosis in soybean RIL populations. Euphytica 196, 137–154 (2014). https://doi.org/10.1007/s10681-013-1021-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-1021-0

Keywords

Navigation