Skip to main content
Log in

Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

An additive-dominance, additive × additive (ADAA) and genotype × environment interaction mix model was used to study the genetic control of β-carotene and l-ascorbic acid in six basic generations (P1, P2, F1, F2, BC1P1 and BC1P2) of tomato derived from the cross CDP8779 accession (Solanum lycopersicum L.) × CDP4777 accession (S. lycopersicum var. cerasiforme). The study was performed in two environments: (1) open field; (2) protected environment, consisting of hydroponic cultivation in a glasshouse. The results indicate that β-carotene accumulation was mainly additive (32.2% of the genetic component), with a small dominant component (4.2%) and an important additive × environment interaction contribution (63.6%). In target environments with moderate to high temperatures and no limiting radiation, this the expression additive × environment interaction could substantially enhance the β-carotene content. This trait showed also a high narrow-sense heritability (h 2 = 0.62). Ascorbic acid accumulation was also mainly additive (61.7% of the genetic component), with a minor additive epistatic component (21.5%). This epistatic effect caused a negative heterosis that reduced the positive main additive effect. Nevertheless, in the described target environments, the additive × environment interaction contribution (16.8%) may enhance the ascorbic acid content and compensate for the negative heterosis effect. The total narrow-sense heritability of this trait can be considered useful (h 2 = 0.52). In conclusion, the CDP4777 accession is a very interesting donor parent for the joint improvement of β-carotene (without diminishing lycopene content) and ascorbic acid content in commercial nutraceutical tomato breeding programmes; the F1 hybrids derived from this accession showed nearly 450% of the commonly reported average β-carotene content and close to 130% of the ascorbic acid content of the female parent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adalid AM, Roselló S, Nuez F (2010) Evaluation and selection of accessions of Solanum section Lycopersicon for content of bioactive components. J Food Compos Anal 23:613–618

    Article  CAS  Google Scholar 

  • Bhatt RP, Biswas VR, Pandey HK, Verma GS, Kumar N (1998) Heterosis for vitamin C in tomato (Lycopersicon esculentum). Indian J Agric Sci 68:176–178

    Google Scholar 

  • Bhatt RP, Biswas VR, Kumar N (2001) Heterosis, combining ability and genetics for vitamin C, total soluble solids and yield in tomato (Lycopersicon esculentum) at 1700 m altitude. J Agric Sci 137:71–75

    Article  Google Scholar 

  • Brown GB (1954) The ascorbic acid content of tomatoes as related to illumination. J Am Soc Hortic Sci 65:342–348

    Google Scholar 

  • Byers T, Guerrero N (1995) Epidemiologic evidence for vitamin C and vitamin E in cancer prevention. Am J Clin Nutr 62:1385S–1392S

    PubMed  CAS  Google Scholar 

  • Causse M, Buret M, Robini K, Verschave P (2003) Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J Food Sci 68:2342–2350

    Article  CAS  Google Scholar 

  • Chalukova M (1988) Carotenoid composition of the fruits of hybrids between Lycopersicon esculentum and some wild species of the genus Lycopersicon, IV. Progenies of lycopene and β-carotene BC1P1 hybrids of L. chmielewskii. Genet Breed 21:49–57

    CAS  Google Scholar 

  • Galiana-Balaguer L, Roselló S, Herrero-Martínez JM, Maquieira A, Nuez F (2001) Determination of l-ascorbic acid in Lycopersicon fruits by capillary zone electrophoresis. Anal Biochem 296:218–224

    Article  PubMed  CAS  Google Scholar 

  • Gould WA (1992) Tomato production processing and technology. CTI Publications, Baltimore

    Book  Google Scholar 

  • Green MA, Fry SC (2005) Vitamin C degradation in plant cells via enzymatic hydrolysis of 4-O-oxalyl-l-threonate. Nature 433:83–87

    Article  PubMed  CAS  Google Scholar 

  • Hamauzu Y, Chachin K, Ueda Y (1998) Effect of postharvest storage temperature on the conversion of 14C-mevalonic acid to carotenes in tomato fruit. J Jpn Soc Hortic Sci 67:549–555

    Article  CAS  Google Scholar 

  • Hanson PM, Yang RY, Wu J, Chen JT, Ledesma D, Tsou S, Lee T (2004) Variation for antioxidant activity and antioxidants in tomato. J Am Soc Hortic Sci 129:704–711

    CAS  Google Scholar 

  • Holden JM, Eldridge AL, Beecher GR, Buzzard IM, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S (1999) Carotenoid content of US foods: an update of the database. J Food Compos Anal 12:169–196

    Article  CAS  Google Scholar 

  • Horemans N, Foyer CH, Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5:263–267

    Article  PubMed  CAS  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  PubMed  CAS  Google Scholar 

  • Lenucci MS, Caccioppola A, Durante M, Serrone L, Piro G, Dalessandro G (2007) Carotenoids content in ripe raw and processed (sauce) berries of high pigment tomato hybrids. Acta Hortic 758:173–179

    CAS  Google Scholar 

  • Liptay A, Papadopoulos AP, Bryan HH, Gull D (1986) Ascorbic acid levels in tomato (Lycopersicon esculentum Mill.) at low temperatures. Agric Biol Chem 50:3185–3187

    Article  CAS  Google Scholar 

  • Lopez-Andreu FJ, Lamela A, Esteban RM, Collado GJ (1986) Evolution of quality parameters in the maturation stage of tomato fruits. Acta Hortic 191:387–394

    Google Scholar 

  • Lynch M, Walsh B (1998) Analysis of quantitative traits. Sinauer Assoc Sunderland

    Google Scholar 

  • Manuelyan H, Yordanov M, Yordanova Z, Illeva Z (1975) Studies on β-carotene and lycopene content in the fruits of Lycopersicon esculentum Mill, × L. chilense Dun. hybrids. Qual Plant Plant Foods Hum Nutr 25:205–210

    Article  CAS  Google Scholar 

  • Marchioli R, Schweiger C, Levantesi G, Tavazzi L, Valagussa F (2001) Antioxidant vitamins and prevention of cardiovascular disease: epidemiological and clinical trial data. Lipids 36:S53–S63

    Article  PubMed  CAS  Google Scholar 

  • McCarty JC, Jenkins JN, Jixiang W (2004a) Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement: I. Phenotypic values and variance components. Crop Sci 44:1226–1230

    Article  Google Scholar 

  • McCarty JC, Jenkins JN, Jixiang W (2004b) Primitive accession derived germplasm by cultivar crosses as sources for cotton improvement: II. Genetic effects and genotypic values. Crop Sci 44:1231–1235

    Article  Google Scholar 

  • McCarty JC, Jixiang W, Jenkins JN (2008) Genetic association of cotton yield with its components traits in derived primitive accessions crossed by elite upland cultivars using the conditional ADAA genetic model. Euphytica 161:337–352

    Article  CAS  Google Scholar 

  • McCollum JP (1954) Effects of light on the formation of carotenoids in tomato fruits. J Food Sci 19:182–189

    Article  CAS  Google Scholar 

  • Miller RG (1974) The jackknife: a review. Biometrika 61:1–15

    Google Scholar 

  • O’ Toole P, Lombard M (1996) Vitamin C and gastric cancer: supplements for some or fruit for all. Gut 39:345–347

    Article  Google Scholar 

  • Rego ER, Finger FL, Casali VWD, Cardos AA (1999) Inheritance of fruit color and pigment changes in a yellow tomato (Lycopersicon esculentum Mill.) mutant. Genet Mol Biol 22:101–104

    Article  Google Scholar 

  • Rick CM (1956) Genetic and systematic studies on accessions of Lycopersicon from the Galapagos islands. Am J Bot 43:687–696

    Article  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant delta. Plant J 17:341–351

    Article  PubMed  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  PubMed  CAS  Google Scholar 

  • Rosello S, Adalid AM, Cornejo-Cebolla J, Nuez F (2011) Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. J Sci Food Agric 91:1014–1021

    Article  PubMed  CAS  Google Scholar 

  • Ross DA (1998) Vitamin A and public health: challenges for the next decade. Proc Nutr Soc 57:159–165

    Article  PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff N, Conklin PL, Loewus FA (2001) Biosynthesis of ascorbic acid in plants: a renaissance. Annu Rev Plant Physiol Plant Mol Biol 52:437–467

    Article  PubMed  CAS  Google Scholar 

  • Stevens MA, Rick CM (1986) Genetics and breeding: fruit quality. In: Athernon JG, Rudich J (eds) The tomato crop. A scientific basis for improvement. Chapman and Hall, London

    Google Scholar 

  • Stevens R, Buret M, Duffe P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  PubMed  CAS  Google Scholar 

  • Stommel JR, Haynes KG (1994) Inheritance of beta carotene content in the wild tomato species Lycopersicon cheesmanii. J Hered 85:401–404

    CAS  Google Scholar 

  • Stommel JR, Abbot JA, Saftner RA (2005) USDA 02L1058 and 02L1059: cherry tomato breeding lines with high fruit β-carotene content. HortScience 40:1569–1570

    Google Scholar 

  • Tee ES (1992) Carotenoids and retinoids in human nutrition. Crit Rev Food Sci Nutr 31:103–163

    Article  PubMed  CAS  Google Scholar 

  • Tomes ML, Quackenbush FW, McQuistan M (1954) Modification and dominance of the gene governing formation of high concentrations of beta-carotene in the tomato. Genetics 39:810–817

    PubMed  CAS  Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of l-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    Article  PubMed  CAS  Google Scholar 

  • Xu ZC, Zhu J (1999) An approach for predicting heterosis based on an additive, dominance and additive × additive model with environment interaction. Heredity 82:510–517

    Article  PubMed  Google Scholar 

  • Yan XF, Xu SY, Xu YH, Zhu J (1998) Genetic investigation of contributions of embryo and endosperm genes to malt Kolbach index, alpha-amylase activity and wort nitrogen content in barley. Theor Appl Genet 96:709–715

    Article  Google Scholar 

  • Zhang Y, Stommel JR (2000) RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (Mo B ), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 100:368–375

    Article  CAS  Google Scholar 

  • Zhu J (1989) Estimation of genetic variance components in the general mixed models. PhD thesis. North Carolina State University, Raleigh

    Google Scholar 

  • Zhu J (1992) Mixel model approaches for estimating genetic variances and covariances. J Biomath 7:1–11

    Google Scholar 

  • Zhu J, Weir BS (1996) Diallel analysis for sex-linked and maternal effects. Theor Appl Genet 92:1–9

    Article  Google Scholar 

Download references

Acknowledgements

This research was financed by the Spanish Ministry of Science and Innovation (MICINN) (project AGL2005-08083-C03-01). The authors thank Dr. Luis Mejía and the Universidad de San Carlos of Guatemala for providing the CPD4777 accession, among others. The authors thank Professor Jun Zhu, director of the Bioinformatics Institute, Zhejiang University, China, for his comments and for kindly providing the software used in the data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Nuez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adalid, A.M., Roselló, S., Valcárcel, M. et al. Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica 184, 251–263 (2012). https://doi.org/10.1007/s10681-011-0584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-011-0584-x

Keywords

Navigation