Skip to main content
Log in

Identification of chromosome regions conferring dry matter accumulation and photosynthesis in wheat (Triticum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Dry matter accumulation (DMA) and photosynthetic capacity are important traits that influence biological yield and ultimate grain yield in wheat. In this study, quantitative trait loci (QTLs) analyses for DMA of stem, leaves, total plant and photosynthesis traits (Fv/Fm) at the jointing and anthesis stages were studied, using a set of 168 doubled haploid lines (DHLs) derived from the cross Huapei 3 (HP3)/Yumai 57 (YM57). QTL analyses were performed using QTL-Network 2.0 software based on the mixed linear model approach. A total of 18 additive QTLs and 12 pairs of epistatic QTLs were distributed on 16 of the 21 chromosomes. Most of the additive QTLs associated with DMA co-located in the same or adjacent chromosome intervals with QTLs for grain yield and related traits. A major locus Qculmc.sau-5D.1 (14.2%) close to the molecular marker Xwmc215 detected at the jointing stage was shared by QTLs for heading date and vernalization sensitivity, indicating tight linkages or pleiotropisms. One pair of epistatic QTLs, Qleavesc.sau-4A and Qleavesc.sau- 6B, explained 13.11% of the phenotypic variation at anthesis. All QTL × environment interactions were detected at the jointing stage, showing the importance of the jointing stage in determining the final outcome of plant development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Börner A, Schumann E, Fürste A, Cöster H et al (2002) Mapping of quantitative trait loci determining agronomically important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 105:921–936

    Article  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat (Triticum astivum L.) mapping populations. Field Crop Res 101:172–179

    Article  Google Scholar 

  • Campbell BT, Baenziger PS, Gill KS, Eskridge KM et al (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat (Triticum astivum L.). Crop Sci 43:1493–1505

    CAS  Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable Photosystem II fluorescence. Photochem Photobiol 60:1–23

    Article  CAS  Google Scholar 

  • Diab AA, Teulat-Merah B, This D, Ozturk NZ, Benscher D, Sorrells ME (2004) Identification of drought-inducible genes and differentially expressed sequence tags in barley (Hordeum vulgare L.). Theor Appl Genet 109:1417–1425

    Article  CAS  PubMed  Google Scholar 

  • Doerge RW (2002) Multifactorial genetics: mapping and analysis of quantitative trait loci in 239 experimental populations. Nat Rev 3:43–52

    CAS  Google Scholar 

  • Fracheboud Y, Jompuk C, Ribaut JM, Stamp P, Leipner J (2004) Genetic analysis of cold-tolerance of photosynthesis in maize (Zea mays L.). Plant Mol Biol 56:241–253

    Article  CAS  PubMed  Google Scholar 

  • Guo CQ, Bai ZA, Liao PA, Jin WK (2004) New high quality and yield wheat (Triticum aestivum L.) variety Yumai 57. China Seed Ind 4:54

    Google Scholar 

  • Guo PG, Baum M, Varshney RK, Graner A et al (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley (Hordeum vulgare L.) under post-flowering drought. Euphytica 163:203–214

    Article  CAS  Google Scholar 

  • Hai Y, Kang MH (2007) Breeding of a new wheat (Triticum aestivum L.) variety Huapei 3 with high yield and early maturing. Henan Agri Sci 5:36–37

    Google Scholar 

  • Huang XQ, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L). Theor Appl Genet 106:1379–1389

    CAS  PubMed  Google Scholar 

  • Juenger T, Mckay JK, Hausmann N, Keurentjes JJB et al (2005) Identification and characterization of QTL underlying wholeplant physiology in Arabidopsis thaliana: δ13C, stomatal conductance and transpiration efficiency. Plant Cell Environ 28:1–12

    Article  Google Scholar 

  • Katsura K, Maeda S, Horie T, Shiraiwa T (2007) Analysis of yield attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice (Oryza sativa L.) recently bred in China. Field Crop Res 103:170–177

    Article  Google Scholar 

  • Krause GH, Weiss E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Kusutani A, Ueda K, Asanuma K, Toyota M (1999) Studies on varietal difference in yielding ability in rice (Oryza sativa L.). Relationship between source-sink ratio and yield. Jpn J Crop Sci 68:21–28

    Google Scholar 

  • Leipner J, Jompuk C, Camp KH, Stamp P, Fracheboud Y (2008) QTL studies reveal little relevance of chilling-related seedling traits for yield in maize (Zea mays L.). Theor Appl Genet 116:555–562

    Article  PubMed  Google Scholar 

  • Nagata K, Yoshinaga S, Takanashi J, Terao T (2001) Effects of dry matter production, translocation of nonstructural carbohydrates and nitrogen application on grain filling in rice (Oryza sativa L.) cultivar Takanari, a cultivar bearing a large number of spikelets. Plant Prod Sci 4:173–183

    Article  Google Scholar 

  • Nagata K, Shimizu H, Terao T et al (2002) Quantitative trait loci for nonstructural carbohydrate accumulation in leaf and culms of rice (Oryza sativa L.) and their effects on grain filling. Breed Sci 52:275–283

    Article  CAS  Google Scholar 

  • Pelleschi S, Leonardi A, Rocher JP, Cornic G et al (2006) Analysis of the relationships between growth, photosynthesis and carbohydrate metabolism using quantitative trait loci (QTL) in young maize (Zea mays L.) plants subjected to water deprivation. Mol Breed 17:21–39

    Article  CAS  Google Scholar 

  • Pimantel C, Davey PA, Juvik JA, Long SP (2005) Gene loci in maize (Zea mays L.) influencing susceptibility to chilling dependent photoinhibition of photosynthesis. Photosynth Res 85:319–326

    Article  CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A et al (2005) A high-density genetic map of hexaploid wheat(Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Ritter KB, Jordan DR, Chapman SC, Godwin ID et al (2008) Identification of QTL for sugar-related traits in a sweet × grain sorghum (Sorghum bicolor L. Moench) recombinant inbred population. Mol Breed 22:367–384

    Article  Google Scholar 

  • Somers D, Isaac JP, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Su JY, Tong YP, Liu QY, Li B et al (2006) Mapping quantitative trait loci for post-anthesis dry matter accumulation in wheat (Triticum aestivum L.). J Integr Plant Biol 48:938–944

    Article  CAS  Google Scholar 

  • Sumi A, Hakoyama S, Weng JH, Agata W, Takeda T (1996) Analysis of plant characteristics determining ear weight increase during the ripening period in rice (Oryza sativa L.). Jpn J Crop Sci 65:214–221

    Google Scholar 

  • Takai T, Fukuta Y, Shiraiwa T, Horie T (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J Exp Bot 56:2107–2118

    Article  CAS  PubMed  Google Scholar 

  • Tambussi EA, Nogués S, Araus JL (2005) Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta 221:446–458

    Article  CAS  PubMed  Google Scholar 

  • Ungerer MC, Halldorsdottir SS, Purugganan MD, Mackay TFC (2003) Genotype-environment interactions at quantitative trait loci affecting inflorescence development in Arabidopsis thaliana. Genetics 165:353–365

    CAS  PubMed  Google Scholar 

  • Verma V, Foulkes MJ, Worland AJ, Sylvester-Bradley R et al (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat (Triticum aestivum L.) under optimal and drought stressed environments. Euphytica 135:255–263

    Article  CAS  Google Scholar 

  • Vreugdenhil D, Koornneef M, Sergeeva L (2007) Use of QTL analysis in physiological research. Russ J Plant Physiol 54:15–21

    Article  CAS  Google Scholar 

  • Wang DL, Zhu J, Li ZK, Paterson AH (1999) Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet 99:1255–1264

    Article  Google Scholar 

  • Wardlaw IF (1990) The control of carbon partitioning in plants. New Phytol 116:341–381

    Article  CAS  Google Scholar 

  • Yang J, Zhu J (2005) Predicting superior genotypes in multiple environments based on QTL effects. Theor Appl Genet 110:1268–1274

    Article  PubMed  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007a) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum L.). J Integr Plant Biol 49:646–654

    Article  CAS  Google Scholar 

  • Yang DL, Jing RL, Chang XP, Li W (2007b) Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176:571–584

    Article  CAS  PubMed  Google Scholar 

  • Zhang KP, Tian JC, Zhao L, Wang SS (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat (Triticum aestivum L.). J Genet Genomics 35:119–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang KP, Tian JC, Zhao L, Liu B, Chen GF (2009) Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat (Triticum aestivum L.) cultivars. Genetica 135:257–265

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the State Key Basic Research and Development Plan of China (973, 2009CB118301) and the Hi-Tech Research and Development (863) Program of China (2006AA10Z1E9). Thanks are due to Professor Yan Hai (Henan Academy of Agricultural Sciences, Zhengzhou) for kindly providing the research materials and to Dr. C.E. Walker, Kansas State University, USA, for constructive advice and language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jichun Tian or Shijie Zhao.

Additional information

Jichun Tian and Shijie Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Zhang, K., Zhao, L. et al. Identification of chromosome regions conferring dry matter accumulation and photosynthesis in wheat (Triticum aestivum L.). Euphytica 171, 145–156 (2010). https://doi.org/10.1007/s10681-009-0024-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-009-0024-3

Keywords

Navigation