Skip to main content
Log in

Searching for interacting QTL in related populations of an outbreeding species

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Many important crop species are outbreeding. In outbreeding species the search for genes affecting traits is complicated by the fact that in a single cross up to four alleles may be present at each locus. This paper is concerned with the search for interacting quantitative trait loci (QTL) in populations which have been obtained by crossing a number of parents. It will be assumed that the parents are unrelated, but the methods can be extended easily to allow a pedigree structure. The approach has two goals: (1) finding QTL that are interacting with other loci and also loci which behave additively; (2) finding parents which segregate at two or more interacting QTL. Large populations obtained by crossing these parents can be used to study interactions in detail. QTL analysis is carried out by means of regression on predictions of QTL genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allard RW (1960) Principles of plant breeding. Wiley, New York

    Google Scholar 

  • Alvarez-Castro JM, Carlborg O (2007) A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics 176:1151–1167. doi:10.1534/genetics.106.067348

    Article  PubMed  Google Scholar 

  • Bink MCAM (2005) FlexQTL Software: efficient estimation of identity by descent probabilities and QTL mapping in pedigreed populations. Plant and animal genomes XIII conference, 15–19 January, San Diego, CA

  • Bink MCAM, Uimari P, Sillanpää MJ, Janss LLG, Jansen RC (2002) Multiple QTL mapping in related plant populations via a pedigree-analysis approach. Theor Appl Genet 104:751–762. doi:10.1007/s00122-001-0796-x

    Article  PubMed  CAS  Google Scholar 

  • Boer MP, Ter Braak CJF, Jansen RC (2002) A penalized likelihood method for mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 162:951–960

    PubMed  CAS  Google Scholar 

  • Bulmer M (1985) The mathematical theory of quantitative genetics. Clarendon Press, Oxford

    Google Scholar 

  • Carlborg Ö, Andersson L, Kinghorn B (2000) The use of a genetic algorithm for simultaneous mapping of multiple interacting quantitative trait loci. Genetics 155:2003–2010

    PubMed  CAS  Google Scholar 

  • Carlborg Ö, Hocking PM, Burt DW, Haley CS (2004) Simultaneous mapping of epistatic QTL in chickens reveals clusters of QTL pairs with similar genetic effects on growth. Genet Res Camb 83:197–209

    CAS  Google Scholar 

  • Cheverud JM, Routman EJ (1995) Epistasis and its contribution to genetic variance components. Genetics 139:1455–1461

    PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Cockerham CC, Zeng Z-B (1996) Design III with marker loci. Genetics 143:1437–1456

    PubMed  CAS  Google Scholar 

  • Du F-X, Hoeschele I (2000) Estimation of additive, dominance and epistatic variance components using finite locus models implemented with a single-site Gibbs and a descent graph sampler. Genet Res Camb 76:187–198

    CAS  Google Scholar 

  • George AW, Visscher PM, Haley CS (2000) Mapping quantitative trait loci in complex pedigrees: a two-step variance component approach. Genetics 156:2081–2092

    PubMed  CAS  Google Scholar 

  • Gianfranceschi L, Soglio V (2004) The European Project HIDRAS: innovative multidisciplinary approaches to breeding high quality disease resistant apples. Acta Hortic 663:327–330

    Google Scholar 

  • Haley CS, Knott SA, Elsen J-M (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics 136:1195–1207

    PubMed  CAS  Google Scholar 

  • Heath SC (1997) Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 61:748–760. doi:10.1086/515506

    Article  PubMed  CAS  Google Scholar 

  • Jannink J-L (2007) Identifying quantitative trait locus by genetic background interactions in association studies. Genetics 176:553–561. doi:10.1534/genetics.106.062992

    Article  PubMed  CAS  Google Scholar 

  • Jannink J-L (2008) QTL × genetic background interaction: predicting inbred progeny value. Euphytica 161:61–69. doi:10.1007/s10681-007-9509-0

    Article  Google Scholar 

  • Jannink J-L, Jansen RC (2001) Mapping epistatic quantitative trait loci with one-dimensional genome searches. Genetics 157:445–454

    PubMed  CAS  Google Scholar 

  • Jannink J-L, Bink MCAM, Jansen RC (2001) Using complex plant pedigrees to map valuable genes. Trends Plant Sci 6:337–342. doi:10.1016/S1360-1385(01)02017-9

    Article  PubMed  CAS  Google Scholar 

  • Kao C-H, Zeng Z-B (2002) Modeling epistasis of quantitative trait loci using Cockerham’s model. Genetics 160:1243–1261

    PubMed  Google Scholar 

  • Knott SA (2005) Regression-based quantitative trait loci mapping: robust, efficient and effective. Philos Trans R Soc B 360:1435–1442

    Article  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Piepho H-P, Zeng Z-B, Schön CC (2007) The role of epistasis in the manifestation of heterosis: a systems-oriented approach. Genetics 177:1815–1825. doi:10.1534/genetics.107.077537

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624. doi:10.1038/sj.hdy.6886230

    Article  PubMed  Google Scholar 

  • Xu S (1995) A comment on the simple regression method for interval mapping. Genetics 141:1657–1659

    PubMed  CAS  Google Scholar 

  • Yi N, Xu S, Allison DB (2003) Bayesian model choice and search strategies for mapping interacting quantitative trait loci. Genetics 165:867–883

    PubMed  CAS  Google Scholar 

  • Zeng Z-B, Wang T, Zou W (2005) Modeling quantitative trait loci and interpretation of models. Genetics 169:1711–1725. doi:10.1534/genetics.104.035857

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to Chris Maliepaard and Fred van Eeuwijk for their comments on an earlier draft of this manuscript. This project has been carried out with the financial support from the Commission of the European Communities (Contract No. LK5-CT-2002-01492), Directorate-General Research Quality of Life and Management of Living Resources Program. This manuscript does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area; its content is the sole responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Jansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, J., Boer, M.P., Bink, M.C.A.M. et al. Searching for interacting QTL in related populations of an outbreeding species. Euphytica 166, 131–144 (2009). https://doi.org/10.1007/s10681-008-9849-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9849-4

Keywords

Navigation