Skip to main content
Log in

Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Results on the induction of haploidy in tomato via both gynogenesis and microspore embryogenesis in vitro are far from satisfactory. The number of reports available on the gynogenic induction via in vitro non-fertilized ovary culture, wide hybridization and the use of irradiated pollen are limited. The main reason for this may be the difficulty experienced in working with this species. Therefore, many failed attempts have not been reported. Non-fertilized ovary culture and wide hybridization using Solanum sisymbriifolium Lam. as the male parent seem to be promising (Bal and Abak, Pak J Biol Sci 6:745–749, 2003a, b). Further efforts in this line may improve results obtained earlier. Several reports (Gresshoff and Doy, Planta 107:161–170, 1972; Sharp et al., Planta 104:357–361, 1972; Zamir et al., Plant Sci Lett 17:353–361, 1980; Chlyah and Taarji, Proc. Int. Symp. Plant tissue and cell culture application to crop improvement. 24–29 Sept. 1984; Jaramillo and Summers, J Amer Soc Hort Sci 115:1047–1050, 1990, HortScience 26:915–916, 1991; Summers et al., HortScience 27:838–840, 1992) are available on anther culture of tomato but a working protocol is yet to be developed. For the induction of anther callus, anthers carrying microspores at the meiotic stages appear to be the most responsive. However, the callus and the regenerants obtained were mainly of somatic origin. Somatic tissues of tomato anthers carrying the meiotic stages are highly responsive to tissue culture manipulations in comparison to anther tissues of the later stages. Therefore, reports on the induction of callus from anthers carrying early microspore stages should be met with caution. If culturing young anthers is of any help then it may be that the anther tissues are nursing the microspores and bringing them to the responsive uninucleate stage. Following the first report by Sharp et al. (Planta 104:357–361, 1972) on the induction of microspore embryogenesis, using a modified version of the microspore culture, reports concentrated only on anther culture (reviewed by Chlyah et al., Haploids in crop improvement I. Biotechnology in agriculture and forestry 12. Springer-Verlag, Berlin, 1990). Based on findings reported by Yinnan et al. (J Agric Biotechnol, http://www.cau.edu.cn/ agrocbi/periodical/ nyswjsxb/ nysw99/ nysw9901/ 990115.htm, 1999) and Bal and Abak (Biotechnol Biotechnol Equip 19:35–42, 2005) on the induction of symmetrical division of microspore nuclei from uninucleate microspores, the formation of multicellular structures and globular embryos, it is likely that the future of tomato haploidy lies in the technique of isolated microspore culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anonymous (2004) Food and Agriculture Organization (FAO), FAOSTAT. Statistics Database (Agriculture Data) 2003. On the internet, http://www.apps.fao.org

  • Atherton JG, Rudich J (eds) (1986) The tomato crop. A scientific basis for improvement. Chapman and Hall, London

    Google Scholar 

  • Bal U, Abak K (2003a) Attempts of haploidy induction in tomato (Lycopersicon esculentum Mill.) via gynogenesis I: Pollination with Solanum sisymbriifolium Lam. Pollen. Pak J Biol Sci 6:745–749

    Google Scholar 

  • Bal U, Abak K (2003b) Attempts of haploidy induction in tomato (Lycopersicon esculentum Mill.) via gynogenesis II: In vitro non-fertilized ovary culture. Pak J Biol Sci 6:750–755

    Article  Google Scholar 

  • Bal U, Abak K (2005) Induction of symmetrical nucleus division and multicellular structures from the isolated microspores of Lycopersicon esculentum mill. Biotechnol Biotechnol Equip 19:35–42

    CAS  Google Scholar 

  • Barinova J, Clement C, Marting L, Baillieul F, Soukupova H, Heberle-Bors E, Touraev A (2004) Regulation of developmental pathways in cultured microspores of tobacco and snapdragon by medium pH. Planta 219:141–146

    Article  PubMed  CAS  Google Scholar 

  • Brasileiro ACR, Willadino L, Guerra M, Colaço W, Meunier I, Camara TR (1999) Anther development stage and gamma radiation effects on tomato anther-derived callus formation. Scientia Agricola 56(4):835–842

    Article  Google Scholar 

  • Chambonnet D (1996) Essais d’haploidisation de la tomate. In: Rapport D’Activite 1995–1996 Station D’Amelioration Des Plantes Maraicheres D’Avignon-Montfavet, pp 84–85

  • Chetelat RT, Cisneros P, Stamova L, Rick CM (1997) A male-fertile Lycopersicon esculentum x Solanum lycopersicoides hybrids enables direct backcrossing to tomato at the diploid level. Euphytica 95:99–108

    Article  Google Scholar 

  • Chlyah A, Taarji H (1984) Androgenesis in tomato In: Proc. Int. Symp. Plant tissue and cell culture application to crop improvement. 24–29 Sept. 1984. Novak FJ, Havel L, Dolezel J (eds) pp 241–242

  • Chlyah A, Taarji H, Chlyah H (1990) Tomato (Lycopersicon esculentum L.) Anther culture and induction of androgenesis. In: Bajaj YPS (ed) Haploids in crop improvement I. Biotechnology in agriculture and forestry 12. Springer-Verlag, Berlin

    Google Scholar 

  • Debergh P, Nitsch C (1973) Histophysiologie vegetale-premiers resultants sur la culture in vitro de grains de pollen isoles chez la Tomate. C. R. Acad. Sci Paris 276 Serie D, 1281–1286

  • Doganlar S, Frary A, Tanksley SD (1997) Production of interspecific F1 hybrids, BC1, BC2 and BC3 populations between Lycopersicon esculentum and two accesions of Lycopersicon peruvianum carrying new root-knot nematode resistnce genes. Euphytica 95:203–207

    Article  Google Scholar 

  • Egashira H, Ogawa R, Kano H, Tanisaka T, Imanishi S (1999) Pistillate-parental differences and the ability to produce interspecific hybrids between Lycopersicon esculentum and ‘peruvianum-complex’ species (L. peruvianum and L. chilense). Plant Breed 118:253–258

    Article  Google Scholar 

  • Ellialtioglu S, Sari N, Abak K (2001) Production of haploid plants. In: Babaoglu M, Guzel E, Ozcan S (eds) Plant biotechnology I, Selcuk Univ. Press, pp 137–189 (in Turkish)

  • Foolad MR, Lin GY (2001) Heritability of early blight resitance in a Lycopersicon esculentum x Lycopersicon hirsutum cross estimated by correlation between parent and progeny. Plant Breed 120:173–177

    Article  Google Scholar 

  • Foroughi-Wehr B, Wenzel G (1993) Andro- and parthenogenesis. In: Hayward MD, Bosemark ND, Romagosa I (eds) Plant breeding, principles and prospects. pp 261–277

  • Gradziel TM, Robinson RW (1991) Overcoming unilateral breeding barriers between Lycopersicon peruvianum and cultivated tomato, Lycopersicon esculentum. Euphytica 54:1–9

    Article  Google Scholar 

  • Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (Tomato). Planta 107:161–170

    Article  Google Scholar 

  • Guha S, Maheswari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Hermsen JGT, Ramanna MS (1981) Haploidy and plant breeding. Phil Trans R Soc Lond B292:499–507

    Google Scholar 

  • Ionescu A, Tanasescu M, Suta E, Tanasescu C, Ionescu C, Poncu J (1989) Preliminary results on the obtention of haploids for the species Capsicum annuum L, Lycopersicon esculentum Mill. and Phaseolus vulgaris L. Cercet. Genet Veget Anim I: 237–245, (In Romanian)

  • Jaramillo J, Summers WL (1990) Tomato anther callus production: solidifying agent and concentration influence induction of callus. J Amer Soc Hort Sci 115:1047–1050

    Google Scholar 

  • Jaramillo J, Summers WL (1991) Dark-light treatments influence induction of tomato anther callus. HortScience 26:915–916

    Google Scholar 

  • Kimber G, Riley R (1963) Haploid angiosperms. Bot Rev 29:480–531

    Article  Google Scholar 

  • Knox RE, Clarke JM, DePauw RM (2000) Dicamba and growth condition effects on doubled haploid production in durum wheat crossed with maize. Plant Breed 119:289–298

    Article  Google Scholar 

  • LanZhuang C, Adachi T (1996) Efficient hybridization between Lycopersicon esculentum and L. peruvianum via ‘embryo rescue’ and in vitro propagation. Plant Breed 115:251–256

    Article  Google Scholar 

  • Lemonnier-Le Penhuizic C, Chatelet C, Kloareg B, Potin P (2001) Carrageenan oligosaccharides enhance stress-induced microspore embryogenesis in Brassica oleracea var italica. Plant Sci 160:1211–1220

    Article  PubMed  CAS  Google Scholar 

  • Lichter B (1981) Anther culture of Brassica napus in a liquid culture medium. Z Pflanzenphysiol 103:229–237

    CAS  Google Scholar 

  • Linsmaier EM, Skoog F (1965) Organic growth factor requirements of tobacco tissue cultures. Physiol Plant 18:100–127

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15:473–497

    Article  CAS  Google Scholar 

  • Nitsch JP (1969) Experimental androgenesis in Nicotiana. Phytomorphology 19:389–404

    Google Scholar 

  • Nonecke IL (1989) Vegetable production. Avi, Van Nostrand Reinold, NewYork

  • Ozzambak E, Atasayar A (1994) Anther culture of tomatoes and eggplants. Acta Hort 366:229–233

    Google Scholar 

  • Obert B, Barnabas B (2004) Colchicine induced embryogenesis in maize. Plant Cell Tiss Org Cult 77:283–285

    Article  CAS  Google Scholar 

  • Paksoy M, Abak K (1994) Investigations on factors affecting in vitro androgenesis in tomato (Lycopersicon esculentum Mill.) IInd National Biotechnology Symposium, 22–23 September 1994 Beytepe-Ankara, p 15

  • Rick CM, DeVerna JW, Chetelat RT, Stevens MA (1987) Potential contributions of wide crosses to improvement of processing tomatoes. Acta Hort (ISHS) 200:45–56

    Google Scholar 

  • San LH, Gelebart P (1986) Production of gynogenic haploids. In: Vasil IK (ed) Cell culture and somatic cell genetics of plants. Academic, Orlando, pp 305–322

    Google Scholar 

  • Shariatpanahi ME, Bal U, Heberle-Bors E, Touraev A (2006) Stresses applied for the re-programming of plant microspores towards in vitro embryogenesis. Physiologia Plantarum 127:519–534

    Article  CAS  Google Scholar 

  • Sharp WR, Raskin RS, Sommer HE (1972) The use of nurse culture in the development of haploid clones of tomato. Planta 104:357–361

    Article  Google Scholar 

  • Shtereva LA, Zagorska NA, Dimitrov BD, Kruleva MM, Oanh HK (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill). II. Factors affecting induction of androgenesis. Plant Cell Rep 18:312–317

    Article  CAS  Google Scholar 

  • Summers WL, Jaramillo J, Bailey T (1992) Microspore developmental stage and anther length influence the induction of tomato anther callus. HortScience 27:838–840

    Google Scholar 

  • Touraev A, Indrianto A, Wratschko I, Vicente O, Heberle-Bors E (1996) Efficient microspore embryogenesis in wheat (Triticum aestivum L.) induced by starvation at high temperatures. Sex Plant Reprod 9:209–215

    Article  Google Scholar 

  • Touraev A, Vicente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • Varghese TM, Yadav G (1986) Production of embryoids and calli from isolated microspore of tomato (Lycopersicon esculentum Mill) in liquid media. Biol Plant (Prague) 28:126–129

    Google Scholar 

  • Vidavski F, Leviatov S, Milo J, Rabinowitch HD, Kedar N, Czosnek H (1998) Response of tolerant breeding lines of tomato, Lycopersicon esculentum, originating from three different sources (L. peruvianum, L. pimpinellifolium and L. chilense) to early controlled inoculation by tomato yellow leaf curl virus (TYLCV). Plant Breed 117:165–169

    Article  Google Scholar 

  • Yinnan Y, Dewei Z Yong L, Shansu D (1999) Production of embryoids and calli from isolated microspores of tomato in liquid medium. J Agric Biotechnol No.1 1999 http://www.cau.edu.cn/ agrocbi/periodical/ nyswjsxb/ nysw99/ nysw9901/ 990115.htm

  • Zagorska NA, Shtereva A, Dimitrov BD, Kruleva MM (1998) Induced androgenesis in tomato (Lycopersicon esculentum Mill.) I. Influence of genotype on androgenetic ability. Plant Cell Rep 17:968–973

    Article  CAS  Google Scholar 

  • Zagorska NA, Shtereva LA, Kruleva MM, Sotirova VG, Baralieva DL, Dimitrov BD (2004) Induced androgenesis in tomato (Lycopersicon esculentum Mill.). III. Characterization of the regenerants. Plant Cell Rep 22:449–456

    Article  PubMed  CAS  Google Scholar 

  • Zaki MAM, Dickinson HG (1991) Microspore-derived embryos in Brassica: The significance of division symmetry in pollen mitosis I to embryogenic development. Sex Plant Rep 4:48–55

    Google Scholar 

  • Zamir D, Jones RA, Kedar N (1980) Anther culture of male-sterile tomato (Lycopersicon esculentum Mill.) mutants. Plant Sci Lett 17:353–361

    Article  Google Scholar 

  • Zoriniants S, Tashpulatov AS, Heberle-Bors E, Touraev A (2005) The role of stress in the induction of haploid microspore embryogenesis. In: Palmer CE, Keller WA, Kasha KJ (eds) Biotechnology in agiculture and forestry, vol. 56, Haploids in crop improvement II. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ugur Bal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bal, U., Abak, K. Haploidy in tomato (Lycopersicon esculentum Mill.): a critical review. Euphytica 158, 1–9 (2007). https://doi.org/10.1007/s10681-007-9427-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-007-9427-1

Keywords

Navigation