Skip to main content
Log in

Molecular markers for yield components in Brassica juncea – do these assist in breeding for high seed yield?

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

A population of 112 F1-derived doubled haploid lines was produced from a reciprocal cross of Brassica juncea. The parents differed for seed quality, seed color and many agronomic traits. A detailed RFLP linkage map of this population, comprising 316 loci, had been constructed, and was used to map quantitative trait loci (QTL) for seed yield and yield components, viz. siliqua length, number of seeds per siliqua, number of siliques per main raceme and 1000-seed weight. Stable and significant QTLs were identified for all these yield components except seed yield. For yield components, a selection index based on combined phenotypic and molecular data (QTL effects) could double up the efficiency of selection compared to the expected genetic advance by phenotypic selection. Selection indices for high seed yield, based on the phenotypic data of yield and yield components, could only improve the efficiency of selection by 4% of the genetic advance that can be expected from direct phenotypic selection for yield alone. Inclusion of molecular data together with the phenotypic data of yield components in the selection indices did not improve the efficiency of selection for higher seed yield. This is probably due to often negative relationships among the yield components. Most of the QTLs for yield components were compensating each other, probably due to linkage, pleiotropy or developmentally induced relationships among them. The breeding strategy for B. juncea and challenges to marker assisted selection are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MAS:

marker assisted selection

PS:

phenotypic selection

QTL:

quantitative trait loci

References

  • Aastveit, A.H. & K. Aastveit, 1993. Effects of genotype-environment interactions on genetic correlations. Theor Appl Genet 86: 1007–1013.

    Article  Google Scholar 

  • Adams, M.W., 1967. Basis of component compensation in crop plants with special reference to the field bean, Phaseolus vulgaris. Crop Sci 7: 505–510.

    Google Scholar 

  • Bazant, J., D. Laurie, N. Pratchett, J. Chojecki & M. Kearsey, 1997. Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare) cross using marker regression. Mol Breed 3: 29–38.

    Article  Google Scholar 

  • Bouttier, C. & D.G. Morgan, 1992. Ovule development and determination of seed number per pod in oilseed rape (Brassica napus L.). J Exp Bot 43: 709–714.

    Google Scholar 

  • Burton, W., P. Salisbury & D. Potts, 2003. The potential of canola quality Brassica juncea as an oilseed crop for Australia, Proceedings of 11th International Rapeseed Congress, Copenhagen, Vol. 1, pp. 5–7.

  • Butruille, D.V., R.P. Guries & T.C. Osborn, 1999. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brasica napu L. Genetics 153: 949–964.

    PubMed  Google Scholar 

  • Downey, R.K., 1990. Brassica oilseed Breeding-achievements and opportunities. Plant Breed Abst 60: 1165–1170.

    Google Scholar 

  • Dudley, J.W., 1993. Molecular markers in plant improvement: Manipulation of genes affecting quantitative traits. Crop Sci 33: 660–668.

    Google Scholar 

  • Eathington, S.R., J.W. Dudley & G.K. Rufener, 1997. Usefulness of marker-QTL association in early generation selection. Crop Sci 37: 1686–1693.

    Google Scholar 

  • Falconer, D.S. & T.F.C. Mackay, 1996. Introduction to Quantitative Genetics, 4th edn, pp. 189, Addison Wesley Longman Limited, England.

    Google Scholar 

  • Fonseca, C.E.L., D.R. Viands, J.L. Hansen & A.N. Pell, 1999. Associations among forage quality traits, vigor, and disease resistance in alfalfa. Crop Sci 39: 1271–1276.

    Google Scholar 

  • Frova, C., P. Krajewski, N. di Fonzo, M. Villa & M. Sari-Gorla, 1999. Genetic analysis of drought tolerance in maize by molecular markers 1. Yield components. Theor Appl Genet 99: 280–288.

    Article  Google Scholar 

  • Hittalmani, S., H.E. Shahidhar, P.G. Bagali, N. Huang, J.S. Sidhu, V.P. Singh & G.S. Khush, 2002. Molecular mapping of quantitative trait loci for plant growth, yield and yield related traits across diverse locations in a doubled haploid rice population. Euphytica 125: 207–214.

    Article  Google Scholar 

  • Hoarau, J.Y., L. Grivet, B. Offman, L.M. Raboin, J.P. Diorflar, J. Payet, M. Hellmann, A. D'Hont & J.C. Glaszmann, 2002. Genetic dissection of a modern sugarcane cultivar (Saccharum Spp.). II. Detection of QTLs for yield components. Theor Appl Genet 105: 1027–1037.

    Google Scholar 

  • Hospital, F., L. Moreau, F. Lacoudre, A. Charcosset & A. Gallais, 1997. More on the efficiency of marker-assisted selection. Theor Appl Genet 95: 1181–1189.

    Article  Google Scholar 

  • Kato, K., H. Miura & S. Sawada, 2000. Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101: 1114–1121.

    Article  Google Scholar 

  • Kwon, S.H. & J.H. Torrie, 1964. Heritability and interrelationship among traits of two soybean populations. Crop Sci 4: 196–198.

    Google Scholar 

  • Lande, R. & R. Thompson, 1990. Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124: 743–756.

    PubMed  Google Scholar 

  • Lee, M., 1995. DNA markers and plant breeding programs. Adv Agron 55: 265–344.

    Google Scholar 

  • Li, Z., S.R.M. Pinson, W.D. Park, A.H. Paterson & J.W. Stansel, 1997. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 453–465.

  • Mahmood, T., U. Ekuere, F. Yeh, A.G. Good & G.R. Stringam, 2003. RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations. Theor Appl Genet 107: 283–290.

    Article  PubMed  Google Scholar 

  • Moreau, L., A. Charcosset, F. Hospital & A. Gallais, 1998. Marker-assisted selection efficiency in population of finite size. Genetics 148: 1353–1365.

    PubMed  Google Scholar 

  • Rakow, G., 2003. The potential of Brassica juncea, B. carinata and Sinapis alba as new oilseed crops in Canada, Proceedings 11th International Rapeseed Congress, Copenhagen, Vol. 1, p. 1.

  • Reeve, E.C.R., 1955. The variance of genetic correlation coefficient. Biometrics 11: 357–374.

    Google Scholar 

  • Richards, R.A. & N. Thurling, 1979. Genetic analysis of drought stress response in rapeseed (Brassica campestris and B. napus). II. Yield improvement and the application of selection indices. Euphytica 28: 169–177.

    Article  Google Scholar 

  • Robertson, A., 1959. The sampling variance of genetic correlation coefficient. Biometrics 15: 469–485.

    Google Scholar 

  • SAS Institute, Inc. SAS/STAT. 1989.

  • Schön, C.C., A.E. Melchinger, J. Boppenmaier, E. Brunklaus-Jung, R.G. Herrmann & J.F. Seitzer, 1994. RFLP mapping in maize: Quantitative trait loci affecting testcross performance of elite European flint lines. Crop Sci 34: 378–389.

    Google Scholar 

  • Slocum, M.K., S.S. Figdore, W.C. Kennard, J.Y. Suzuki & T.C. Osborn, 1990. Linkage arrangement of restriction fragment length loci in Brassica oleracea. Theor Appl Genet 80: 57–64.

    Article  Google Scholar 

  • Smith, H.F., 1936. A discriminant function for plant selection. Annal Eugenics 7: 240–250.

    Google Scholar 

  • Stromberg, L.D., J.W. Dudley & G.K. Rufener, 1994. Comparing conventional early generation selection with molecular marker assisted selection in maize. Crop Sci 34: 1221–1225.

    Google Scholar 

  • Tar'an, B., T.E. Michaels & K.P. Pauls, 2002. Genetic mapping of agronomic traits in common bean. Crop Sci 42: 544–556.

    Google Scholar 

  • Thiagarajah, M.R. & G.R. Stringam, 1993. A comparison of genetic segregation in traditional and microspore-derived populations of Brassica juncea L. Czern and Coss. Plant Breed 111: 330–334.

    Google Scholar 

  • Thurling, N., 1974. An evaluation of an index method of selection for high yield in turnip rape, Brassica campestris L. ssp. oeleifera Metzg. Euphytica 23: 321–331.

    Article  Google Scholar 

  • Thormann, C.E., M.E. Ferreira, L.E.A. Camargo, J.G. Tivang & T.C. Osborn, 1994. Comparison of RFLP and RAPD markers to estimate genetic relationship within and among cruciferous species. Theor Appl Genet 88: 973–980.

    Google Scholar 

  • Thormann, C.E., J. Romero, J. Mantet & T.C. Osborn, 1996. Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93: 282–286.

    Article  Google Scholar 

  • Van Berloo, R. & P. Stam, 1999. Comparison between marker-assisted selection and phenotypic selection in a set of Arabidopsis thaliana inbred lines. Theor Appl Genet 98: 113–118.

    Article  Google Scholar 

  • Van Ooijen, J.W. & C. Maliepaard, 1996. MapQTLTM version 3.0: Software for the calculation of QTL position on genetic maps. CRO-DLO, Wageningen.

  • Veldboom, L.R. & M. Lee, 1996. Genetic mapping of quantitative trait loci in maize in stress and non-stress environments: I. Grain yield and yield components. Crop Sci 36: 1310–1319.

    Google Scholar 

  • Williams, W.A., M.B. Jones & M.W. Demment, 1990. A concise table for path analysis statistics. Agron J 82: 1022–1024.

    Google Scholar 

  • Woods, D.L., J.J. Capcara & R.K. Downey, 1991. The potential of mustard (Brassica juncea) as an edible crop on the Canadian prairies. Can J Plant Sci 71: 195–198.

    Google Scholar 

  • Xiao, J., J. Li, L. Yuan & S.D. Tanksley, 1996. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92: 230–244.

    Article  Google Scholar 

  • Yousef, G.G. & J.A. Juvik, 2001. Comparison for phenotypic and marker-assisted selection for quantitative traits in sweet corn. Crop Sci 41: 645–655.

    Google Scholar 

  • Zhu, H., G. Briceno, R. Dovel, P.M. Hayes, B.H. Liu, C.T. Liu & S.E. Ulrich, 1999. Molecular breeding for grain yield in barley: An evaluation of QTL effects in a spring barley cross. Theor Appl Genet 98: 772–779.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Mahmood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, T., Rahman, M.H., Stringam, G.R. et al. Molecular markers for yield components in Brassica juncea – do these assist in breeding for high seed yield?. Euphytica 144, 157–167 (2005). https://doi.org/10.1007/s10681-005-5339-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-5339-0

Key Words

Navigation