Erkenntnis

, Volume 82, Issue 1, pp 1–16 | Cite as

Identity and Sortals (and Caesar)

Original Article
  • 212 Downloads

Abstract

According to the sortal conception of the universe of individuals every individual falls under a highest sortal, or category. It is argued here that on this conception the identity relation is defined between individuals a and b if and only if a and b fall under a common category. Identity must therefore be regarded as a relation of the form \(x=_{Z}y\), with three arguments xy, and Z, where Z ranges over categories, and where the range of x and y depends on the value of Z. An identity relation of this kind can be made good sense of in Martin-Löf’s type theory. But identity so construed requires a reformulation of Hume’s Principle that makes this principle unfit for explaining the sortal concept of cardinal number. The Neo-Logicist can therefore not appeal to the sortal conception in tackling the Julius Caesar problem, as proposed by Hale and Wright (The reason’s proper study. Oxford University Press, Oxford, pp. 335–396, 2001b).

References

  1. Anscombe, G. E. M., & Geach, P. T. (1961). Three philosophers. Oxford: Basil Blackwell.Google Scholar
  2. Barnes, J. (2003). Porphyry. Introduction. Translated with an introduction and commentary. Clarendon Later Ancient Philosophers. Oxford: Oxford University PressGoogle Scholar
  3. Carnap, R. (1929). Abriss der Logistik. Vienna: Springer.CrossRefGoogle Scholar
  4. Church, A. (1940). A formulation of the simple theory of types. Journal of Symbolic Logic, 56–68.Google Scholar
  5. Diller, J., & Troelstra, A. (1984). Realizability and intuitionistic logic. Synthese, 60, 253–282.CrossRefGoogle Scholar
  6. Dummett, M. (1973). Frege. Philosophy of language. London: Duckworth. Cited from the second edition (1981).Google Scholar
  7. Dummett, M. (1991). Frege. Philosophy of mathematics. London: Duckworth.Google Scholar
  8. Frege, G. (1884). Grundlagen der Arithmetik. Breslau: Verlag von Wilhelm Koebner.Google Scholar
  9. Frege, G. (1893). Grundgesetze der Arithmetik I. Jena: Hermann Pohle.Google Scholar
  10. Geach, P. T. (1962). Reference and generality. Ithaca, NY: Cornell University Press.Google Scholar
  11. Granström, J. G. (2011). Treatise on intuitionistic type theory. Dordrecht: Springer.CrossRefGoogle Scholar
  12. Griffin, N. (1977). Relative identity. Oxford: Clarendon Press.Google Scholar
  13. Hale, B., & Wright, C. (2000). Implicit definition and the a priori. In P. Boghossian & C. Peacocke (Eds.), New essays on the a priori (pp. 286–319). Oxford: Clarendon Press. Cited from the reprint in Hale and Wright (2001a).CrossRefGoogle Scholar
  14. Hale, B., & Wright, C. (2001a). The reason’s proper study. Oxford: Oxford University Press.CrossRefGoogle Scholar
  15. Hale, B., & Wright, C. (2001b). To bury Caesar…. In The reason’s proper study (pp. 335–396). Oxford: Oxford University Press.Google Scholar
  16. Heck, R. G. (1997). The Julius Caesar objection. In R. G. Heck (Ed.), Language, thought, and logic. Essays in honour of Michael Dummett (pp. 273–308). Oxford: Oxford University Press.Google Scholar
  17. Horsten, L. (2010). Impredicative identity criteria. Philosophy and Phenomenological Research, 80, 411–439.CrossRefGoogle Scholar
  18. Klev, A. (2014). Categories and logical syntax. PhD thesis, Leiden University.Google Scholar
  19. Linnebo, Ø. (2005). To be is to be an \(F\). Dialectica, 59, 201–222.CrossRefGoogle Scholar
  20. Lowe, E. J. (1989a). Kinds of being. Oxford: Basil Blackwell.Google Scholar
  21. Lowe, E. J. (1989b). What is a criterion of identity? The Philosophical Quarterly, 39, 1–21.CrossRefGoogle Scholar
  22. Martin-Löf, P. (1984). Intuitionistic type theory. Naples: Bibliopolis.Google Scholar
  23. Nordström, B., Petersson, K., & Smith, J. M. (2000). Martin-Löf’s type theory. In S. Abramsky, D. Gabbay, & T. S. E. Maibaum (Eds.), Handbook of logic in computer science. Volume 5: Logic and algebraic methods (pp. 1–37). Oxford: Oxford University Press.Google Scholar
  24. Ranta, A. (1995). Type-theoretical grammar. Oxford: Oxford University Press.Google Scholar
  25. Russell, B. (1908). Mathematical logic as based on a theory of types. American Journal of Mathematics, 30, 222–262.CrossRefGoogle Scholar
  26. Schönfinkel, M. (1924). Bausteine der mathematischen Logik. Mathematische Annalen, 92, 305–316.CrossRefGoogle Scholar
  27. Stevenson, L. (1975). A formal theory of sortal quantification. Notre Dame Journal of Formal Logic, 16, 185–207.CrossRefGoogle Scholar
  28. Westerhoff, J. (2005). Ontological categories. Oxford: Oxford University Press.CrossRefGoogle Scholar
  29. Wright, C. (1997). On the philosophical significance of Frege’s Theorem. In R. G. Heck (Ed.), Language, Thought, and logic. Essays in honour of Michael Dummett (pp. 201–244). Oxford: Oxford University Press. Cited from the reprint in Hale and Wright (2001a).Google Scholar
  30. Wright, C. (1998). On the harmless impredicativity of \(N^=\) (‘Hume’s Principle’). In M. Schirn (Ed.), Philosophy of mathematics today (pp. 339–368). Oxford: Oxford University Press. Cited from the reprint in Hale and Wright (2001a).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of PhilosophyCzech Academy of SciencesPrague 1Czech Republic

Personalised recommendations