Skip to main content

Advertisement

Log in

Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments

  • Published:
Environment Systems and Decisions Aims and scope Submit manuscript

Abstract

Apart from completely novel functionalities, the utilization of nanomaterials (NMs) holds great promise for increasing the performance and efficiency of products and processes. In doing so, they are also expected to be more sustainable in that they may allow for products and processes that can provide better services using less material and energy. However, whether or not NMs do in fact contribute sustainable development still remains a matter of debate. While a relatively high number of risk assessment studies have revealed some of the toxicological and ecotoxicological repercussions of NMs, other sustainability related issues have so far received comparatively little attention. One of these issues refers to the sustainability implications of material use, such as environmental impacts of materials supply, resource depletion, or material criticality. Here, we argue that an adequate assessment of NM-based innovations calls for an inclusion not only of human health and environmental risks but also of aspects related to sustainable materials management. Recognizing the inherent complexity of sustainability issues as well as the difficulties of meeting data needs in early innovation stages, we propose a prospective and preliminary framework to assess the potential benefits and risks of NM-based innovations. We demonstrate the framework's practicability and usefulness in decision-making contexts by applying it to four in-depth case studies of specific NM-based innovations. Also, we point to some methodological issues that may need consideration in the further improvement of the framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdin Z, Alim MA, Saidur R, Islam MR, Rashmi W, Mekhilef S, Wadi A (2013) Solar energy harvesting with the application of nanotechnology. Renew Sustain Energy Rev 26:837–852. doi:10.1016/j.rser.2013.06.023

    CAS  Google Scholar 

  • Alfantazi AM, Moskalyk RR (2003) Processing of indium: a review. Miner Eng 16(8):687–694. doi:10.1016/s0892-6875(03)00168-7

    CAS  Google Scholar 

  • Ali S (2014) Social and environmental impact of the rare earth industries. Resources 3(1):123–134. doi:10.3390/resources3010123

    Google Scholar 

  • Allwood JM, Ashby MF, Gutowski TG, Worrell E (2011) Material efficiency: a white paper. Resour Conserv Recycl 55(3):362–381. doi:10.1016/j.resconrec.2010.11.002

    Google Scholar 

  • Anctil A, Fthenakis V (2013) Critical metals in strategic photovoltaic technologies: abundance versus recyclability. Prog Photovolt Res Appl 21(6):1253–1259. doi:10.1002/pip.2308

    CAS  Google Scholar 

  • Angerer G, Erdmann L, Marscheider-Weidemann F, Scharp M, Lüllmann A, Handke V, Marwede M (2009) Rohstoffe für Zukunftstechnologien: Einfluss des branchenspezifischen Rohstoffbedarfs in rohstoffintensiven Zukunftstechnologien auf die zukünftige Rohstoffnachfrage. Fraunhofer-IRB-Verl, Stuttgart

    Google Scholar 

  • Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213. doi:10.1038/nmat2629

    CAS  Google Scholar 

  • Ayres RU, Simonis UE (1994) Industrial metabolism: restructuring for sustainable development. United Nations University Press, Tokyo

    Google Scholar 

  • Balamurugan B, Das B, Shah VR, Skomski R, Li XZ, Sellmyer DJ (2012) Assembly of uniaxially aligned rare-earth-free nanomagnets. Appl Phys Lett 101(12):122407. doi:10.1063/1.4753950

    Google Scholar 

  • Bell JE, Autry CW, Mollenkopf DA, Thornton LM (2012) A natural resource scarcity typology: theoretical foundations and strategic implications for supply chain management. J Bus Logist 33(2):158–166. doi:10.1111/j.0000-0000.2012.01048.x

    Google Scholar 

  • Binnemans K, Jones PT, Blanpain B, van Gerven T, Yang Y, Walton A, Buchert M (2013) Recycling of rare earths: a critical review. J Clean Prod 51:1–22. doi:10.1016/j.jclepro.2012.12.037

    CAS  Google Scholar 

  • Buchert M, Schüler D, Bleher D (2009) Critical metals for future sustainable technologies and their recycling potential. Ökoinstitut e.V, Darmstadt

    Google Scholar 

  • Cattaneo AG, Gornati R, Sabbioni E, Chiriva-Internati M, Cobos E, Jenkins MR, Bernardini G (2010) Nanotechnology and human health: risks and benefits. J Appl Toxicol 30(8):730–744. doi:10.1002/jat.1609

    CAS  Google Scholar 

  • CDRA (2014) Markets for recycled concrete aggregates. Construction & Demolition Recycling Association (CDRA). http://www.cdrecycling.org/end-markets. Accessed 17 Feb 2014

  • Chen C, Habert G, Bouzidi Y, Jullien A (2010) Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod 18(5):478–485. doi:10.1016/j.jclepro.2009.12.014

    CAS  Google Scholar 

  • Chen SJ, Collins FG, Macleod AJN, Pan Z, Duan WH, Wang CM (2011) Carbon nanotube–cement composites: a retrospect. IES J A 4(4):254–265. doi:10.1080/19373260.2011.615474

    Google Scholar 

  • Chen D, Wang Y, Hong M (2012) Lanthanide nanomaterials with photon management characteristics for photovoltaic application. Nano Energy 1(1):73–90. doi:10.1016/j.nanoen.2011.10.004

    CAS  Google Scholar 

  • Chen G, Seo J, Yang C, Prasad PN (2013a) Nanochemistry and nanomaterials for photovoltaics. Chem Soc Rev 42(21):8304–8338. doi:10.1039/c3cs60054h

    CAS  Google Scholar 

  • Chen H, Roco MC, Son J, Jiang S, Larson CA, Gao Q (2013b) Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding. J Nanopart Res 15(9). doi:10.1007/s11051-013-1951-4

  • Cornell RM, Schwertmann U (2003) Introduction to the iron oxides. In: Cornell RM, Schwertmann U (eds) The iron oxides, 2nd and extended edn. Wiley-VCH Weinheim, Germany, pp 1–34

  • Corot C, Robert P, Idée J-M, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58(14):1471–1504. doi:10.1016/j.addr.2006.09.013

    CAS  Google Scholar 

  • Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E (2012) Nanotechnologies in the food industry—recent developments, risks and regulation. Trends Food Sci Technol 24(1):30–46. doi:10.1016/j.tifs.2011.10.006

    CAS  Google Scholar 

  • Dhingra R, Naidu S, Upreti G, Sawhney R (2010) Sustainable nanotechnology: through green methods and life-cycle thinking. Sustainability 2(10):3323–3338. doi:10.3390/su2103323

    Google Scholar 

  • Dias AMGC, Hussain A, Marcos AS, Roque ACA (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29(1):142–155. doi:10.1016/j.biotechadv.2010.10.003

    CAS  Google Scholar 

  • Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7(5):5. doi:10.1186/1743-8977-7-5

    Google Scholar 

  • Eckelman MJ, Graedel TE (2007) Silver emissions and their environmental impacts: a multilevel assessment. Environ Sci Technol 41(17):6283–6289. doi:10.1021/es062970d

    CAS  Google Scholar 

  • Eckelman MJ, Reck BK, Graedel TE (2012) Exploring the global journey of Nickel with Markov chain models. J Ind Ecol 16(3):334–342. doi:10.1111/j.1530-9290.2011.00425.x

    CAS  Google Scholar 

  • Ecoinvent data v2.2. ecoinvent reports 1-25 (2010) Swiss centre for life cycle inventories. http://www.ecoinvent.org

  • EPA (2010) Concrete—introduction to WARM and concrete. In: EPA (ed) Solid waste management and greenhouse gases—documentation for greenhouse gas emission and energy factors used in the waste reduction model (WARM). U.S. Environmental Protecting Agency, Washington

  • Erdmann L, Behrendt S (2011) Kritische Rohstoffe für Deutschland: Identifikation aus Sicht deutscher Unternehmen wirtschaftlich bedeutsamer mineralischer Rohstoffe, deren Versorgungslage sich mittel- bis langfristig als kritisch erweisen könnte. Institut für Zukunftsstudien und Technologiebewertung, Berlin

    Google Scholar 

  • Erdmann L, Graedel TE (2011) Criticality of non-fuel minerals: a review of major approaches and analyses. Environ Sci Technol 45(18):7620–7630. doi:10.1021/es200563g

    CAS  Google Scholar 

  • ETSAP (2010) Cement production. Energy technology systems analysis programm (ETSAP), vol Technology Brief I03. International Energy Agency—Energy Technology Network

  • European Commission (2010) Critical raw materials for the EU. European Commission, Brussels

  • European Commission (2011) Commission recommendation of 18 October 2011 on the Definition of Nanomaterial. Commission of the European Communities, Brussels, Belgium

  • European Commission (2014) Report on critical raw materials for the EU: report of the ad hoc working group on defining critical raw materials. European Commission, Brussels

    Google Scholar 

  • Fang W, Panagiotopoulos I, Ott F, Boué F, Ait-Atmane K, Piquemal J-Y, Viau G, Dalmas F (2014) Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets. J Nanopart Res 16(2). doi:10.1007/s11051-014-2265-x

  • Filser J, Arndt D, Baumann J, Geppert M, Hackmann S, Luther EM, Pade C, Prenzel K, Wigger H, Arning J, Hohnholt MC, Koser J, Kuck A, Lesnikov E, Neumann J, Schutrumpf S, Warrelmann J, Baumer M, Dringen R, von Gleich A, Swiderek P, Thoming J (2013) Intrinsically green iron oxide nanoparticles? From synthesis via (eco-)toxicology to scenario modelling. Nanoscale 5(3):1034–1046. doi:10.1039/c2nr31652h

    CAS  Google Scholar 

  • Forster SP, Olveira S, Seeger S (2011) Nanotechnology in the market: promises and realities. Int J Nanotechnol 8(6/7):592–613. doi:10.1504/ijnt.2011.040193

    Google Scholar 

  • Fthenakis V, Wang W, Kim HC (2009) Life cycle inventory analysis of the production of metals used in photovoltaics. Renew Sustain Energy Rev 13(3):493–517. doi:10.1016/j.rser.2007.11.012

    CAS  Google Scholar 

  • Ganguly A, Chattopadhyay S, Chen K-H, Chen L-C (2014) Production and storage of energy with one-dimensional semiconductor nanostructures. Crit Rev Solid State Mater Sci 39(2):109–153. doi:10.1080/10408436.2013.796909

    CAS  Google Scholar 

  • Gao J, Gu H, Xu B (2009) Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res 42(8):1097–1107. doi:10.1021/ar9000026

    CAS  Google Scholar 

  • Gao TR, Wu YQ, Fackler S, Kierzewski I, Zhang Y, Mehta A, Kramer MJ, Takeuchi I (2013) Combinatorial exploration of rare-earth-free permanent magnets: magnetic and microstructural properties of Fe–Co–W thin films. Appl Phys Lett 102(2):022419. doi:10.1063/1.4775581

    Google Scholar 

  • Garnett EC, Brongersma ML, Cui Y, McGehee MD (2011) Nanowire solar cells. In: Clarke DR, Fratzl P (eds) Annual review of materials research, vol 41. pp 269–295. doi:10.1146/annurev-matsci-062910-100434

  • GDA (2013) Erzeugung von Aluminium - Werkstoff für die Ewigkeit. Gesamtverband der Aluminiumindustrie (GDA). http://www.aluinfo.de/index.php/erzeugung-von-aluminium.html. Accessed 08 Nov 2013

  • Giurco D, Prior T, Mudd GM, Mason L, Behrisch J (2010) Peak minerals in Australia: a review of changing impacts and benefits. Institute for Sustainable Futures, University of Technology, Sydney Department of Civil Engineering, Monash University, Sydney, Australia

  • Giurco D, Mohr S, Mudd G, Mason L, Prior T (2012) Resource criticality and commodity production projections. Resources 1(1):23–33. doi:10.3390/resources1010023

    Google Scholar 

  • Gordon RB, Bertram M, Graedel TE (2006) Metal stocks and sustainability. Proc Natl Acad Sci 103(5):1209–1214. doi:10.1073/pnas.0509498103

    CAS  Google Scholar 

  • Graedel TE, Erdmann L (2012) Will metal scarcity impede routine industrial use? MRS Bull 37(04):325–331. doi:10.1557/mrs.2012.34

    Google Scholar 

  • Graedel TE, Allwood J, Birat J-P, Buchert M, Hagelüken C, Reck BK, Sibley SF, Sonnemann G (2011a) Recycling rates of metals: a status report. UNEP, Nairobi

    Google Scholar 

  • Graedel TE, Allwood J, Birat J-P, Buchert M, Hagelüken C, Reck BK, Sibley SF, Sonnemann G (2011b) What do we know about metal recycling rates? J Ind Ecol. doi:10.1111/j.1530-9290.2011.00342.x

    Google Scholar 

  • Graedel TE, Barr R, Chandler C, Chase T, Choi J, Christoffersen L, Friedlander E, Henly C, Jun C, Nassar NT, Schechner D, Warren S, Yang M-y, Zhu C (2012) Methodology of metal criticality determination. Environ Sci Technol 46(2):1063–1070. doi:10.1021/es203534z

    CAS  Google Scholar 

  • Grieger KD, Laurent A, Miseljic M, Christensen F, Baun A, Olsen SI (2012a) Analysis of current research addressing complementary use of life-cycle assessment and risk assessment for engineered nanomaterials: have lessons been learned from previous experience with chemicals? J Nanopart Res 14(7). doi:10.1007/s11051-012-0958-6

  • Grieger KD, Linkov I, Hansen SF, Baun A (2012b) Environmental risk analysis for nanomaterials: review and evaluation of frameworks. Nanotoxicology 6(2):196–212. doi:10.3109/17435390.2011.569095

    Google Scholar 

  • Habert G, Roussel N (2009) Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cement Concr Compos 31(6):397–402. doi:10.1016/j.cemconcomp.2009.04.001

    CAS  Google Scholar 

  • Hagelüken C (2014) Technologiemetalle – Systemische Voraussetzungen entlang der Recyclingkette. In: Kausch P, Bertau M, Gutzmer J, Matschullat J (eds) Strategische Rohstoffe — Risikovorsorge. Springer, Berlin, pp 161–172. doi:10.1007/978-3-642-39704-2_11

  • Hansen SF, Nielsen KN, Knudsen N, Grieger KD, Baun A (2013) Operationalization and application of “early warning signs” to screen nanomaterials for harmful properties. Environ Sci Process Impacts 15(1):190–203. doi:10.1039/c2em30571b

    CAS  Google Scholar 

  • Hansen SF, Jensen KA, Baun A (2014) NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. J Nanopart Res 16(1). doi:10.1007/s11051-013-2195-z

  • Hanus MJ, Harris AT (2013) Nanotechnology innovations for the construction industry. Prog Mater Sci 58(7):1056–1102. doi:10.1016/j.pmatsci.2013.04.001

    CAS  Google Scholar 

  • Harremoës P, Gee D, MacGarvin M, Stirling A, Keys J, Wynne B, Vaz SG (2001) Late lessons from early warnings: the precautionary principle 1896–2000. Environmental issue report, vol 22. European Environment Agency, Copenhagen, Denmark

  • Hayashi S, Okamoto T (2012) Plasmonics: visit the past to know the future. J Phys D Appl Phys 45(43). doi:10.1088/0022-3727/45/43/433001

  • Hischier R, Walser T (2012) Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Sci Total Environ 425:271–282. doi:10.1016/j.scitotenv.2012.03.001

    CAS  Google Scholar 

  • Hobson DW (2009) Commercialization of nanotechnology. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(2):189–202. doi:10.1002/wnan.28

    Google Scholar 

  • Hristozov D, Malsch I (2009) Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability 1(4):1161–1194. doi:10.3390/su1041161

    CAS  Google Scholar 

  • Hu Y, Luo D, Li P, Li Q, Sun G (2014) Fracture toughness enhancement of cement paste with multi-walled carbon nanotubes. Constr Build Mater 70:332–338. doi:10.1016/j.conbuildmat.2014.07.077

    Google Scholar 

  • Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17(7):668–675. doi:10.1016/j.jclepro.2008.04.007

    CAS  Google Scholar 

  • Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2(3):395–402. doi:10.1021/nn800131j

    CAS  Google Scholar 

  • Hydro (2013) Recycling von Aluverpackungen auf gutem Weg - Hydro in Deutschland. http://www.hydro.com/de/Deutschland/Presse/Nachrichten-Hydro-Aluminium-aktuell-Metall/2013/Recycling-von-Aluverpackungen-auf-gutem-Weg/. Accessed 20 Nov 2013

  • Ipcs (2004) International programme on chemical safety (IPCS Harmonization Project)—risk assessment terminology. WHO, Geneva

    Google Scholar 

  • Kahru A, Dubourguier H-C (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269(2–3):105–119. doi:10.1016/j.tox.2009.08.016

    CAS  Google Scholar 

  • Kahru A, Ivask A (2012) Mapping the dawn of nanoecotoxicological research. Acc Chem Res 46(3):823–833. doi:10.1021/ar3000212

    Google Scholar 

  • Kaiser J-P, Zuin S, Wick P (2013) Is nanotechnology revolutionizing the paint and lacquer industry? A critical opinion. Sci Total Environ 442:282–289. doi:10.1016/j.scitotenv.2012.10.009

    CAS  Google Scholar 

  • Karn B, Wong SS (2013) Ten years of green nanotechnology. In: Shamim N, Sharma VK (eds) Sustainable nanotechnology and the environment: advances and achievements, vol 1124. ACS symposium series. American Chemical Society, Washington, DC, pp 1–10. doi:10.1021/bk-2013-1124.ch001

  • Kawashima S, Hou P, Corr DJ, Shah SP (2013) Modification of cement-based materials with nanoparticles. Cement Concr Compos 36:8–15. doi:10.1016/j.cemconcomp.2012.06.012

    CAS  Google Scholar 

  • Konsta-Gdoutos MS, Metaxa ZS, Shah SP (2010) Highly dispersed carbon nanotube reinforced cement based materials. Cem Concr Res 40(7):1052–1059. doi:10.1016/j.cemconres.2010.02.015

    CAS  Google Scholar 

  • Kuang Y, Di Vece M, Rath JK, van Dijk L, Schropp REI (2013) Elongated nanostructures for radial junction solar cells. Rep Prog Phys 76(10). doi:10.1088/0034-4885/76/10/106502

  • Kück A, Steinfeldt M, Prenzel K, Swiderek P, Gleich Av, Thöming J (2011) Green nanoparticle production using micro reactor technology. J Phys Conf Ser 304:012074. doi:10.1088/1742-6596/304/1/012074

    Google Scholar 

  • Lacal Arántegui R, Corsatea T, Suomalainen K (2013) 2012 JRC wind status report: technology, market and economic aspects of wind energy in Europe. EUR (Luxembourg. Online), vol 25647. Publications Office, Luxembourg

  • Lanzano T, Bertram M, Palo Md, Wagner C, Zyla K, Graedel TE (2006) The contemporary European silver cycle. Resour Conserv Recycl 46(1):27–43. doi:10.1016/j.resconrec.2005.06.003

    Google Scholar 

  • LaPierre RR, Chia ACE, Gibson SJ, Haapamaki CM, Boulanger J, Yee R, Kuyanov P, Zhang J, Tajik N, Jewell N, Rahman KMA (2013) III–V nanowire photovoltaics: review of design for high efficiency. Phys Status Solidi Rapid Res Lett 7(10):815–830. doi:10.1002/pssr.201307109

    CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi:10.1021/cr068445e

    CAS  Google Scholar 

  • Lifset RJ, Gordon RB, Graedel TE, Spatari S, Bertram M (2002) Where has all the copper gone: the stocks and flows project, part 1. JOM 54(10):21–26. doi:10.1007/bf02709216

    Google Scholar 

  • Lifset RJ, Eckelman MJ, Harper EM, Hausfather Z, Urbina G (2012) Metal lost and found: dissipative uses and releases of copper in the United States 1975–2000. Sci Total Environ 417–418:138–147. doi:10.1016/j.scitotenv.2011.09.075

    Google Scholar 

  • Lin S-P, Brown JJ (2007) MR contrast agents: physical and pharmacologic basics. J Magn Reson Imaging 25(5):884–899. doi:10.1002/jmri.20955

    Google Scholar 

  • Liu R, Lal R (2012) Nanoenhanced materials for reclamation of mine lands and other degraded soils: a review. J Nanotechnol 2012:1–18. doi:10.1155/2012/461468

    Google Scholar 

  • Liu Y, Zhao Y, Sun B, Chen C (2013) Understanding the toxicity of carbon nanotubes. Acc Chem Res 46(3):702–713. doi:10.1021/ar300028m

    CAS  Google Scholar 

  • Macaira J, Andrade L, Mendes A (2013) Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells. Renew Sustain Energy Rev 27:334–349. doi:10.1016/j.rser.2013.07.011

    CAS  Google Scholar 

  • Mao JS, Cao J, Graedel TE (2009) Losses to the environment from the multilevel cycle of anthropogenic lead. Environ Pollut 157(10):2670–2677. doi:10.1016/j.envpol.2009.05.003

    CAS  Google Scholar 

  • Marie I, Quiasrawi H (2012) Closed-loop recycling of recycled concrete aggregates. J Clean Prod 37:243–248. doi:10.1016/j.jclepro.2012.07.020

    Google Scholar 

  • Marion J (2011) Towards rare-earth-free permanent magnets—Fe–Cu–Mn nanocomposites. Northeastern University, Boston

    Google Scholar 

  • Marwede M, Berger W, Schlummer M, Mäurer A, Reller A (2013) Recycling paths for thin-film chalcogenide photovoltaic waste—current feasible processes. Renew Energy 55:220–229. doi:10.1016/j.renene.2012.12.038

    CAS  Google Scholar 

  • Maynard AD (2007) Nanotechnology: the next big thing, or much ado about nothing? Ann Occup Hyg 51(1):1–12. doi:10.1093/annhyg/mel071

    CAS  Google Scholar 

  • Mendoza O, Sierra G, Tobón JI (2014) Effect of the reagglomeration process of multi-walled carbon nanotubes dispersions on the early activity of nanosilica in cement composites. Constr Build Mater 54:550–557. doi:10.1016/j.conbuildmat.2013.12.084

    Google Scholar 

  • Meyer DE, Curran MA, Gonzalez MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol 43(5):1256–1263. doi:10.1021/es8023258

    CAS  Google Scholar 

  • Mlinar V (2013) Engineered nanomaterials for solar energy conversion. Nanotechnology 24(4). doi:10.1088/0957-4484/24/4/042001

  • Moss RL, Tzimas E, Kara H, Kooroshy J (2011) Critical metals in strategic energy technologies: assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies. JRC, Petten

    Google Scholar 

  • Moss RL, Tzimas E, Willis P, Arendorf J, Thompson P, Chapman A, Morley N, Sims E, Bryson R, Pearson J, Tercero Espinoza LA, Marscheider-Weidemann F, Soulier M, Lüllmann A, Sartorius C, Ostertag K (2013) Critical metals in the path towards the decarbonisation of the EU energy sector: assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies. JRC scientific and policy reports. European Commission, Joint Research Center, Institute for Energy and Transport, Luxembourg, Luxembourg

  • Mudd GM (2007) Global trends in gold mining: towards quantifying environmental and resource sustainability. Resour Policy 32(1–2):42–56. doi:10.1016/j.resourpol.2007.05.002

    Google Scholar 

  • Mudd GM (2010) The environmental sustainability of mining in Australia: key mega-trends and looming constraints. Resour Policy 35(2):98–115. doi:10.1016/j.resourpol.2009.12.001

    Google Scholar 

  • Mulvihill MJ, Beach ES, Zimmerman JB, Anastas PT (2011) Green chemistry and green engineering: a framework for sustainable technology development. Annu Rev Environ Resour 36:271–293. doi:10.1146/annurev-environ-032009-095500

    Google Scholar 

  • Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21(21):2133–2148. doi:10.1002/adma.200802366

    CAS  Google Scholar 

  • Nowack B, David RM, Fissan H, Morris H, Shatkin JA, Stintz M, Zepp R, Brouwer D (2013) Potential release scenarios for carbon nanotubes used in composites. Environ Int 59C:1–11. doi:10.1016/j.envint.2013.04.003

    Google Scholar 

  • NRC (2007) Minerals, critical minerals and the U.S. economy. National Research Council, Washington

    Google Scholar 

  • Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25. doi:10.1080/17435390701314761

    Google Scholar 

  • OECD (2010) Material Case Study 1: Critical Metals and Mobile Devices. OECD Global Forum on Environment - Focusing on Sustainable Materials Management, np

  • OECD (2012) Sustainable materials management. OECD Publishing. doi:10.1787/9789264174269-en

  • Ogawa T, Ogata Y, Gallage R, Kobayashi N, Hayashi N, Kusano Y, Yamamoto S, Kohara K, Doi M, Takano M, Takahashi M (2013) Challenge to the synthesis of α′′-Fe 16 N 2 compound nanoparticle with high saturation magnetization for rare earth free new permanent magnetic material. Appl Phys Express 6(7):073007. doi:10.7567/apex.6.073007

    Google Scholar 

  • PE, LBP (2008) GaBi 4: software-system and databases for life cycle engineering. Echterdingen, Stuttgart

    Google Scholar 

  • Peng K-Q, Lee S-T (2011) Silicon nanowires for photovoltaic solar energy conversion. Adv Mater 23(2):198–215. doi:10.1002/adma.201002410

    CAS  Google Scholar 

  • Peng XH, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomed 3(3):311–321

    CAS  Google Scholar 

  • Peng K-Q, Wang X, Li L, Hu Y, Lee S-T (2013) Silicon nanowires for advanced energy conversion and storage. Nano Today 8(1):75–97. doi:10.1016/j.nantod.2012.12.009

    CAS  Google Scholar 

  • Prior T, Giurco D, Mudd G, Mason L, Behrisch J (2011) Resource depletion, peak minerals and the implications for sustainable resource management. Glob Environ Change. doi:10.1016/j.gloenvcha.2011.08.009

    Google Scholar 

  • Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19(35):6274–6293. doi:10.1039/b902394a

    CAS  Google Scholar 

  • Qu X, Brame J, Li Q, Alvarez PJJ (2013) Nanotechnology for a safe and sustainable water supply: enabling integrated water treatment and reuse. Acc Chem Res 46(3):834–843. doi:10.1021/ar300029v

    CAS  Google Scholar 

  • Rabiet M, Brissaud F, Seidel JL, Pistre S, Elbaz-Poulichet F (2009) Positive gadolinium anomalies in wastewater treatment plant effluents and aquatic environment in the Hérault watershed (South France). Chemosphere 75(8):1057–1064. doi:10.1016/j.chemosphere.2009.01.036

    CAS  Google Scholar 

  • Rashad AM (2013) Effects of ZnO2, ZrO2, Cu2O3, CuO, CaCO3, SF, FA, cement and geothermal silica waste nanoparticles on properties of cementitious materials—a short guide for civil engineer. Constr Build Mater 48:1120–1133. doi:10.1016/j.conbuildmat.2013.06.083

    Google Scholar 

  • Reck BK, Graedel TE (2012) Challenges in metal recycling. Science 337(6095):690–695. doi:10.1126/science.1217501

    CAS  Google Scholar 

  • Reck BK, Müller DB, Rostkowski K, Graedel TE (2008) Anthropogenic nickel cycle: insights into use, trade, and recycling. Environ Sci Technol 42(9):3394–3400. doi:10.1021/es072108l

    CAS  Google Scholar 

  • Reinländer C (2003) MRT-Kontrastmittel für das Knochenmark: Vergleichende experimentelle Untersuchungen von USPIO, SPIO und Gd-DOTA. Inaugural-Dissertation, Westfälischen Wilhelms-Universität Münster, Germany

  • Reiser FKM, Rodrigues C, Rosa D (2009) High-technology elements for thin-film photovoltaic applications: a demand-supply outlook on the basis of current energy and PV market growths scenarios. In: Powalla M (ed) Fifth user forum thin film photovoltaics: modules—systems—applications. OTTI, Regensburg

    Google Scholar 

  • Reller A (2009) Rohstoffsituation Bayern: Keine Zukunft ohne Rohstoffe: Strategien und Handlungsoptionen. IW Consult GmbH

  • Reuter M, Hudson C, Hagelüken C, Heiskanen K, Meskers C, van Schaik A (2013) Metal recycling: opportunities, limits, infrastructu. UNEP, Nairobi

    Google Scholar 

  • Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H (2009) Nanomedicine—challenge and perspectives. Angew Chem Int Ed Engl 48(5):872–897. doi:10.1002/anie.200802585

    CAS  Google Scholar 

  • Roland F (2012) Contribution of nanotechnologies in textiles. Actual Chim 360:28–31

    Google Scholar 

  • Rombach G (2003) Grenzen des recyclings. Schriftenreihe des IME/Metallurgische Prozesstechnik und Metallrecycling, Institut und Lehrstuhl der RWTH Aachen, vol 4. Shaker, Aachen

  • Scrivener KL, Kirkpatrick RJ (2008) Innovation in use and research on cementitious material. Cem Concr Res 38(2):128–136. doi:10.1016/j.cemconres.2007.09.025

    CAS  Google Scholar 

  • Selinsky RS, Ding Q, Faber MS, Wright JC, Jin S (2013) Quantum dot nanoscale heterostructures for solar energy conversion. Chem Soc Rev 42(7):2963–2985. doi:10.1039/c2cs35374a

    CAS  Google Scholar 

  • Shokrollahi H (2013) Contrast agents for MRI. Mater Sci Eng C Mater Biol Appl 33(8):4485–4497. doi:10.1016/j.msec.2013.07.012

    CAS  Google Scholar 

  • Silvestre C, Duraccio D, Cimmino S (2011) Food packaging based on polymer nanomaterials. Prog Polym Sci 36(12):1766–1782. doi:10.1016/j.progpolymsci.2011.02.003

    CAS  Google Scholar 

  • Sobolkina A, Mechtcherine V, Khavrus V, Maier D, Mende M, Ritschel M, Leonhardt A (2012) Dispersion of carbon nanotubes and its influence on the mechanical properties of the cement matrix. Cement Concr Compos 34(10):1104–1113. doi:10.1016/j.cemconcomp.2012.07.008

    CAS  Google Scholar 

  • Som C, Wick P, Krug H, Nowack B (2011) Environmental and health effects of nanomaterials in nanotextiles and facade coatings. Environ Int 37(6):1131–1142. doi:10.1016/j.envint.2011.02.013

    CAS  Google Scholar 

  • Som C, Nowack B, Krug HF, Wick P (2013) Toward the development of decision supporting tools that can be used for safe production and use of nanomaterials. Acc Chem Res 46(3):863–872. doi:10.1021/ar3000458

    CAS  Google Scholar 

  • Spinelli P, Ferry VE, van de Groep J, van Lare M, Verschuuren MA, Schropp REI, Atwater HA, Polman A (2012) Plasmonic light trapping in thin-film Si solar cells. J Opt 14(2). doi:10.1088/2040-8978/14/2/024002

  • Stefanidou M, Papayianni I (2012) Influence of nano-SiO2 on the Portland cement pastes. Compos B Eng 43(6):2706–2710. doi:10.1016/j.compositesb.2011.12.015

    CAS  Google Scholar 

  • Steinfeldt M (2012) Environmental impact and energy demand of nanotechnology. In: Lambauer J, Fahl U, Voß A (eds) Nanotechnology and energy—science, promises and its limits. Pan Stanford Publishing, Singapore, pp 247–264

    Google Scholar 

  • Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16(4):133–146. doi:10.1016/j.mattod.2013.04.006

    CAS  Google Scholar 

  • Subramanian V, Semenzin E, Hristozov D, Marcomini A, Linkov I (2014) Sustainable nanotechnology: defining, measuring and teaching. Nano Today 9(1):6–9. doi:10.1016/j.nantod.2014.01.001

    CAS  Google Scholar 

  • Sugimoto S (2011) Current status and recent topics of rare-earth permanent magnets. J Phys D Appl Phys 44(6):064001. doi:10.1088/0022-3727/44/6/064001

    Google Scholar 

  • Tharumarajah A, Koltun P (2011) Cradle to gate assessment of environmental impact of rare earth metals. Paper presented at the 7th Australian conference on life cycle assessment, Melbourne

  • Theis TL, Bakshi BR, Durham D, Fthenakis VM, Gutowski TG, Isaacs JA, Seager T, Wiesner MR (2011) A life cycle framework for the investigation of environmentally benign nanoparticles and products. Phys Status Solidi (RRL) Rapid Res Lett 5(9):312–317. doi:10.1002/pssr.201105083

  • Toma HE (2013) Developing nanotechnological strategies for green industrial processes. Pure Appl Chem 85(8):1655–1669. doi:10.1351/pac-con-12-12-02

    CAS  Google Scholar 

  • Ugwu OO, Arop JB, Nwoji CU, Osadebe NN (2013) Nanotechnology as a preventive engineering solution to highway infrastructure failures. J Constr Eng Manag 139(8):987–993. doi:10.1061/(asce)co.1943-7862.0000670

    Google Scholar 

  • Upadhyayula VKK, Meyer DE, Curran MA, Gonzalez MA (2012) Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review. J Clean Prod 26:37–47. doi:10.1016/j.jclepro.2011.12.018

    CAS  Google Scholar 

  • U.S. Department of Energy (2010) Critical materials strategy. U.S. Department of Energy, Washington

    Google Scholar 

  • U.S. Department of Energy (2011) Critical materials strategy. U.S. Department of Energy, Washington

    Google Scholar 

  • van Broekhuizen P, van Broekhuizen F, Cornelissen R, Reijnders L (2011) Use of nanomaterials in the European construction industry and some occupational health aspects thereof. J Nanopart Res 13(2):447–462. doi:10.1007/s11051-010-0195-9

    CAS  Google Scholar 

  • Villaraza AJL, Bumb A, Brechbiel MW (2010) Macromolecules, dendrimers, and nanomaterials in magnetic resonance imaging: the interplay between size, function, and pharmacokinetics. Chem Rev 110(5):2921–2959. doi:10.1021/cr900232t

    CAS  Google Scholar 

  • von Gleich A (2006) Outlines of a sustainable metals industry. In: von Gleich A, Ayres RU, Gößling-Reisemann S (eds) Sustainable metals management. Springer, Dordrecht, pp 3–39

    Google Scholar 

  • von Weizsäcker E, Hargroves KC, Smith MH, Desha C, Stasinopoulos P (2009) Factor five: transforming the global economy through 80 % improvements in resource productivity. Earthscan, London

    Google Scholar 

  • Walser T, Demou E, Lang DJ, Hellweg S (2011) Prospective environmental life cycle assessment of nanosilver t-shirts. Environ Sci Technol 45(10):4570–4578. doi:10.1021/es2001248

    CAS  Google Scholar 

  • Wang T, Müller DB, Graedel TE (2007) Forging the anthropogenic iron cycle. Environ Sci Technol 41(14):5120–5129. doi:10.1021/es062761t

    CAS  Google Scholar 

  • Wang Y, Wang T, Da P, Xu M, Wu H, Zheng G (2013) Silicon nanowires for biosensing, energy storage, and conversion. Adv Mater 25(37):5177–5195. doi:10.1002/adma.201301943

    CAS  Google Scholar 

  • Weickert J, Dunbar RB, Hesse HC, Wiedemann W, Schmidt-Mende L (2011) Nanostructured organic and hybrid solar cells. Adv Mater 23(16):1810–1828. doi:10.1002/adma.201003991

    CAS  Google Scholar 

  • Wittmer D, Erren M, Lauwigi C, Ritthoff M, Dressler C (2011) Umweltrelevante metallische Rohstoffe: Teil 2: Untersuchungen zu ausgewählten Metallen: Gallium, Gold, Indium, Mangan, Nickel, Palladium, Silber, Titan, Zink, Zinn. Wuppertalinstitut für Klima, Umwelt und Energie, Wuppertal

    Google Scholar 

  • Wuppertal Institute for Climate, Environment and Energy (2011) Material intensity of materials, fuels, transport services, food. Accessed 03 March 2014

  • WVM (2013) Die NE-Metalle. http://www.wvmetalle.de/welcome.asp?page_id=25&sessionid. Accessed 28 Oct 2013

  • Yan X, Li B, Li L-S (2013) Colloidal graphene quantum dots with well-defined structures. Acc Chem Res 46(10):2254–2262. doi:10.1021/ar300137p

    CAS  Google Scholar 

  • Yu R, Lin Q, Leung S-F, Fan Z (2012) Nanomaterials and nanostructures for efficient light absorption and photovoltaics. Nano Energy 1(1):57–72. doi:10.1016/j.nanoen.2011.10.002

    CAS  Google Scholar 

  • Zeng L, Ren W, Zheng J, Cui P, Wu A (2012) Ultrasmall water-soluble metal-iron oxide nanoparticles as T1-weighted contrast agents for magnetic resonance imaging. Phys Chem Chem Phys 14(8):2631–2636. doi:10.1039/c2cp23196d

    CAS  Google Scholar 

  • Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42(7):3127–3171. doi:10.1039/c3cs00009e

    CAS  Google Scholar 

  • Zhao Z, Zhou Z, Bao J, Wang Z, Hu J, Chi X, Ni K, Wang R, Chen X, Chen Z, Gao J (2013) Octapod iron oxide nanoparticles as high-performance T(2) contrast agents for magnetic resonance imaging. Nat Commun 4:2266. doi:10.1038/ncomms3266

    Google Scholar 

  • Zhou H, Hsu W-C, Duan H-S, Bob B, Yang W, Song T-B, Hsu C-J, Yang Y (2013) CZTS nanocrystals: a promising approach for next generation thin film photovoltaics. Energy Environ Sci 6(10):2822–2838. doi:10.1039/c3ee41627e

    CAS  Google Scholar 

  • Zimmermann T (2013a) Dynamic material flow analysis of critical metals embodied in thin-film photovoltaic cells. artec—Research Center for Sustainability Studies, Bremen, Germany

  • Zimmermann T (2013b) Historic and future flows of critical materials resulting from deployment of photovoltaics. In: Chalmers University of T (ed) Proceedings of LCM 2013

  • Zimmermann T, Gößling-Reisemann S (2013) Critical materials and dissipative losses: a screening study. Sci Total Environ 461–462:774–780. doi:10.1016/j.scitotenv.2013.05.040

    Google Scholar 

  • Zimmermann T, Gößling-Reisemann S (2014) Recycling potentials of critical metals-analyzing secondary flows from selected applications. Resources 3(1):291–318. doi:10.3390/resources3010291

  • Zimmermann T, Rehberger M, Gößling-Reisemann S (2013) Material Flows Resulting from Large Scale Deployment of Wind Energy in Germany. Resources 2(3):303–334. doi:10.3390/resources2030303

    Google Scholar 

  • Zuser A, Rechberger H (2011) Considerations of resource availability in technology development strategies: the case study of photovoltaics. Resour Conserv Recycl 56(1):56–65. doi:10.1016/j.resconrec.2011.09.004

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Authors' contribution

All three co-authors collaboratively contributed to conception and design of the research and the methodological framework, and wrote the paper. Christian Pade was the lead author on the section of photovoltaics; Henning Wigger was the lead author on the sections on the concrete and MRI case studies, and Till Zimmermann was the lead author on the sections on sustainable materials management (including resource efficiency, criticality, and dissipation) and on the case study on permanent magnets. Insights on the assessment of nanotechnologies and their release have mainly been provided by Henning Wigger. Christian Pade critically revised the paper regarding aspects of decision support and innovation assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henning Wigger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wigger, H., Zimmermann, T. & Pade, C. Broadening our view on nanomaterials: highlighting potentials to contribute to a sustainable materials management in preliminary assessments. Environ Syst Decis 35, 110–128 (2015). https://doi.org/10.1007/s10669-014-9530-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10669-014-9530-5

Keywords

Navigation