Skip to main content
Log in

Assessment of the impact of land use/land cover change on carbon storage in Chengdu, China, in the context of carbon peaking and carbon neutrality, 2000–2030

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Land use/land cover (LULC) change can dramatically influence carbon storage. A comprehensive study of the link between LULC and carbon storage can enhance regional carbon storage, optimise territorial spatial layout, coordinate land development and utilisation, improve ecological protection mechanisms, and promote low-carbon sustainable urban development. This paper established a "past-present-future" long-series carbon storage assessment model with Chengdu as the research area. Combining the Markov-PLUS and InVEST models, we analysed the spatial and temporal changes in carbon storage in Chengdu from 2000 to 2030 and finally explored the sensitivity of LULC changes to carbon storage. The results show that: (1) From 2000 to 2030, LULC changes in Chengdu show the overall pattern of "Cultivated Land decreases in a large area; Grassland decreases gradually; Construction Land expands in a large scale; Woodland and Water increase slightly; Unused Land decreases first and then increases. "Land decreases first and then increases." (2) The overall carbon storage in Chengdu shows a fluctuating downward trend, showing the spatial distribution characteristics of "higher in the north, west, and southeast, and lower in the east and central," and the ED scenario contributes to the achievement of peak carbon and carbon neutrality targets. (3) The transformation of Cultivated Land into Construction Land was the key factor in reducing carbon storage. In contrast, converting Grassland and Cultivated Land into Woodland played the role of compensating carbon storage. In the context of achieving carbon peaking and carbon neutrality, this study could inform future planning and development regarding carbon storage in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Alam, S. A., Starr, M., & Clark, B. J. (2013). Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study.Journal of Arid Environments,89, 67–76.

    Article  Google Scholar 

  • Babbar, D., Areendran, G., Sahana, M., Sarma, K., Raj, K., & Sivadas, A. (2021). Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve India.Journal of Cleaner Production,278, 123333.

    Article  CAS  Google Scholar 

  • Blüthgen, N., Dormann, C. F., Prati, D., Klaus, V. H., Kleinebecker, T., Hölzel, N., & Weisser, W. W. (2012). A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization.Basic and Applied Ecology,13(3), 207–220.

    Article  Google Scholar 

  • Chen, G., Yang, Y., Xie, J., et al. (2007). The allocation of underground carbon in China’s forests.Acta Ecologica Sinica,27, 5148–5157.

    Google Scholar 

  • Chen, Y., Li, X., Liu, X., & Ai, B. (2014). Modeling urban land-use dynamics in a fast developing city using the modified logistic cellular automaton with a patch-based simulation strategy.International Journal of Geographical Information Science,28(2), 234–255.

    Article  Google Scholar 

  • Cui, W., Cai, L., Xi, H., Yang, F., & Chen, M. (2022). Ecological security assessment and multi-scenario simulation analysis of Zhejiang Greater Bay Area based on LUCC.Acta Ecologica Sinica,42, 2136–2148.

    Google Scholar 

  • Fan, L., Cai, T., Wen, Q., Han, J., Wang, S., Wang, J., & Yin, C. (2023). Scenario simulation of land use change and carbon storage response in Henan Province, China: 1990–2050.Ecological Indicators,154, 110660.

    Article  CAS  Google Scholar 

  • Feng, Y., Chen, S., Tong, X., Lei, Z., Gao, C., & Wang, J. (2020). Modeling changes in China’s 2000–2030 carbon stock caused by land use change.Journal of Cleaner Production,252, 119659.

    Article  Google Scholar 

  • Gao, L., Tao, F., Liu, R., Wang, Z., Leng, H., & Zhou, T. (2022). Multi-scenario simulation and ecological risk analysis of land use based on the PLUS model: A case study of Nanjing.Sustainable Cities and Society,85, 104055.

    Article  Google Scholar 

  • Ghasemloo, N., Matkan, A. A., Alimohammadi, A., Aghighi, H., & Mirbagheri, B. (2022). Estimating the agricultural farm soil moisture using spectral indices of Landsat 8, and Sentinel-1, and artificial neural networks.Journal of Geovisualization and Spatial Analysis,6(2), 19.

    Article  Google Scholar 

  • Han, J., Hu, Z., Mao, Z., Li, G., Liu, S., Yuan, D., & Guo, J. (2022). How to account for changes in carbon storage from coal mining and reclamation in Eastern China? Taking Yanzhou Coalfield as an example to simulate and estimate.Remote Sensing,14(9), 2014.

    Article  Google Scholar 

  • He, Q., Zeng, C., Xie, P., Liu, Y., & Zhang, M. (2018). An assessment of forest biomass carbon storage and ecological compensation based on surface area: A case study of Hubei Province, China.Ecological Indicators,90, 392–400.

    Article  Google Scholar 

  • He, H., Li, X. K., Huan, L. D., Chang, Z. Y., & Zhang, A. G. (2022). Study on evolution of urban economic connection network structure in Chengdu-Chongqing Twin Cities economic circle.Areal Research and Development,41(04), 32–37.

    Google Scholar 

  • Hecht, R., Behnisch, M., & Herold, H. (2020). Innovative approaches, tools and visualization techniques for analysing land use structures and dynamics of cities and regions.Journal of Geovisualization and Spatial Analysis,4(2), 19.

    Article  Google Scholar 

  • Hernández-Alonso, H., Madrigal-González, J., Tornos-Estupiña, L., Santiago-Rodríguez, A., Alonso-Rojo, P., Morera-Beita, A., & Silla, F. (2023). Tree-size heterogeneity modulates the forest age-dependent carbon density in biomass and top soil stocks on Mediterranean woodlands.Plant and Soil,486, 1–13.

    Article  Google Scholar 

  • Hoque, M. Z., Cui, S., Islam, I., Xu, L., & Ding, S. (2021). Dynamics of plantation forest development and ecosystem carbon storage change in coastal Bangladesh.Ecological Indicators,130, 107954.

    Article  CAS  Google Scholar 

  • Jiang, W., Deng, Y., Tang, Z., Lei, X., & Chen, Z. (2017). Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models.Ecological Modelling,345, 30–40.

    Article  Google Scholar 

  • Kucsicsa, G., Popovici, E. A., Bălteanu, D., Grigorescu, I., Dumitraşcu, M., & Mitrică, B. (2019). Future land use/cover changes in Romania: Regional simulations based on CLUE-S model and CORINE land cover database.Landscape and Ecological Engineering,15, 75–90.

    Article  Google Scholar 

  • Lee, J. G., Lee, D. H., Jung, J. Y., Lee, S. G., Han, S. H., Kim, S., & Kim, H. J. (2023). The effects of stand density control on carbon cycle inChamaecyparis obtusa(Siebold and Zucc) Endl. Forests.Forests,14(2), 217.

    Article  Google Scholar 

  • Li, L., Song, Y., Wei, X., & Dong, J. (2020a). Exploring the impacts of urban growth on carbon storage under integrated spatial regulation: A case study of Wuhan China.Ecological Indicators,111, 106064.

    Article  Google Scholar 

  • Li, S., Zhang, B., Ma, B., Hou, Q., & He, H. (2020b). Spatiotemporal evolution of effective accumulated temperatures of≥ 5 C and≥ 10 C based on grid data in China from 1961 to 2016.Journal of Natural Resources,35, 1216–1227.

    Article  Google Scholar 

  • Li, J., Zhang, C., & Zhu, S. (2021a). Relative contributions of climate and land-use change to ecosystem services in arid inland basins.Journal of Cleaner Production,298, 126844.

    Article  Google Scholar 

  • Li, J., Guo, X., Chuai, X., Xie, F., Yang, F., Gao, R., & Ji, X. (2021b). Reexamine China’s terrestrial ecosystem carbon balance under land use-type and climate change.Land Use Policy,102, 105275.

    Article  Google Scholar 

  • Li, K., Cao, J., Adamowski, J. F., Biswas, A., Zhou, J., Liu, Y., & Qin, Y. (2021c). Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the Loess Plateau area using the InVEST model: A case study in Huining County China.Environmental Development,39, 100641.

    Article  Google Scholar 

  • Li, S., Xiaoling, Z., Jin, F., Chaoyang, L., Lihao, Y., & Cheng, Z. (2023). Regional transport and potential sources of fine particulate matter in the Chengdu Plain Economic Zone in winter.Environmental Pollution and Control,45(06), 817–821.

    CAS  Google Scholar 

  • Liang, X., Guan, Q., Clarke, K. C., Liu, S., Wang, B., & Yao, Y. (2021a). Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China.Computers, Environment and Urban Systems,85, 101569.

    Article  Google Scholar 

  • Liang, Y., Hashimoto, S., & Liu, L. (2021b). Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecological Indicators,120, 106939.

    Article  CAS  Google Scholar 

  • Lin, Z., & Peng, S. (2022). Comparison of multimodel simulations of land use and land cover change considering integrated constraints-A case study of the Fuxian Lake basin.Ecological Indicators,142, 109254.

    Article  Google Scholar 

  • Liu, Y., & Qinglin, Y. (2022). Motivation and Capability : A policy study on coordinated air pollution control in Chengdu plain economic zone.Public Administration and Policy Review,11(06), 49–58.

    Google Scholar 

  • Liu, Q., Yang, D., Cao, L., & Anderson, B. (2022). Assessment and prediction of carbon storage based on land use/land cover dynamics in the tropics: A case study of Hainan island China.Land,11(2), 244.

    Article  Google Scholar 

  • Liu, J., Pei, X., Yu, W., Nan, J., Fang, H., Wang, K., & Jiao, J. (2024). How much carbon storage will loss in a desertification area? Multiple policy scenario analysis from Gansu Province.Science of the Total Environment,913, 169668.

    Article  CAS  Google Scholar 

  • Liu, J., Dietz, T., Carpenter, S. R., Alberti, M., Folke, C., Moran, E., & Taylor, W. W. (2007). Complexity of coupled human and natural systems.Science,317(5844), 1513–1516.

    Article  CAS  Google Scholar 

  • Lu, F., Hu, H., Sun, W., Zhu, J., Liu, G., Zhou, W., & Yu, G. (2018). Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010.Proceedings of the National Academy of Sciences,115(16), 4039–4044.

    Article  CAS  Google Scholar 

  • Makkonen, M., Huttunen, S., Primmer, E., Repo, A., & Hildén, M. (2015). Policy coherence in climate change mitigation: An ecosystem service approach to forests as carbon sinks and bioenergy sources.Forest Policy and Economics,50, 153–162.

    Article  Google Scholar 

  • Mansour, S., Al-Belushi, M., & Al-Awadhi, T. (2020). Monitoring land use and land cover changes in the mountainous cities of Oman using GIS and CA-Markov modelling techniques.Land Use Policy,91, 104414.

    Article  Google Scholar 

  • Peng, K., Jiang, W., Ling, Z., Hou, P., & Deng, Y. (2021). Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration.Journal of Cleaner Production,307, 127321.

    Article  Google Scholar 

  • Peng, Y., Cheng, W., Xu, X., & Song, H. (2024). Analysis and prediction of the spatiotemporal characteristics of land-use ecological risk and carbon storage in Wuhan metropolitan area.Ecological Indicators,158, 111432.

    Article  CAS  Google Scholar 

  • Qiu, H., Hu, B., & Zhang, Z. (2021). Impacts of land use change on ecosystem service value based on SDGs report–taking Guangxi as an example.Ecological Indicators,133, 108366.

    Article  Google Scholar 

  • Sadat, M., Zoghi, M., & Malekmohammadi, B. (2020). Spatiotemporal modeling of urban land cover changes and carbon storage ecosystem services: Case study in Qaem Shahr County Iran.Environment, Development and Sustainability,22, 8135–8158.

    Article  Google Scholar 

  • Stankovic, M., Ambo-Rappe, R., Carly, F., Dangan-Galon, F., Fortes, M. D., Hossain, M. S., & Prathep, A. (2021). Quantification of blue carbon in seagrass ecosystems of Southeast Asia and their potential for climate change mitigation.Science of the Total Environment,783, 146858.

    Article  CAS  Google Scholar 

  • Sun, X., Zhang, Y., Shen, Y., Randhir, T. O., & Cao, M. (2019). Exploring ecosystem services and scenario simulation in the headwaters of Qiantang River watershed of China.Environmental Science and Pollution Research,26, 34905–34923.

    Article  CAS  Google Scholar 

  • Uddin, M. S., & Czajkowski, K. P. (2022). Performance assessment of spatial interpolation methods for the estimation of atmospheric carbon dioxide in the wider geographic extent.Journal of Geovisualization and Spatial Analysis,6(1), 10.

    Article  Google Scholar 

  • Wang, Z., Zeng, J., & Chen, W. (2022). Impact of urban expansion on carbon storage under multi-scenario simulations in Wuhan China.Environmental Science and Pollution Research,29(30), 45507–45526.

    Article  Google Scholar 

  • Xiang, S., Wang, Y., Deng, H., Yang, C., Wang, Z., & Gao, M. (2022a). Response and multi-scenario prediction of carbon storage to land use/cover change in the main urban area of Chongqing China.Ecological Indicators,142, 109205.

    Article  CAS  Google Scholar 

  • Xiang, S., Zhang, Q., Wang, D., Wang, S., Wang, Z., Xie, Y., & Gao, M. (2022b). Response and vulnerability analysis of carbon storage to LUCC in the main urban area of Chongqing during 2000–2020.Journal of Natural Resources,37(05), 1198–1213.

    Article  Google Scholar 

  • Xu, Q., Yang, R., Dong, Y. X., Liu, Y. X., & Qiu, L. R. (2016). The influence of rapid urbanization and land use changes on terrestrial carbon sources/sinks in Guangzhou, China.Ecological Indicators,70, 304–316.

    Article  Google Scholar 

  • Xu, L., He, N.P., & Yu, G. R. (2018) A dataset of carbon density of Chinas terrestrial ecosystem in 2010s.Science Data Bank.https://doi.org/10.11922/sciencedb.603

  • Yang, Y., Lan, H., & Li, J. (2020). Spatial econometric analysis of the impact of socioeconomic factors on PM2.5 concentration in China’s inland cities: A case study from Chengdu plain economic zone.International Journal of Environmental Research and Public Health,17(1), 74.

    Article  Google Scholar 

  • Yuan, H., Zhang, Z., Rong, X., Feng, D., Zhang, S., & Yang, S. (2023). MPFFNet: LULC classification model for high-resolution remote sensing images with multi-path feature fusion.International Journal of Remote Sensing,44(19), 6089–6116.

    Article  Google Scholar 

  • Yue, C., Ciais, P., Houghton, R. A., & Nassikas, A. A. (2020). Contribution of land use to the interannual variability of the land carbon cycle.Nature Communications,11(1), 3170.

    Article  CAS  Google Scholar 

  • Zhang, M., Huang, X., Chuai, X., Yang, H., Lai, L., & Tan, J. (2015). Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective.Scientific Reports,5(1), 10233.

    Article  CAS  Google Scholar 

  • Zhang, F., Zhan, J., Zhang, Q., Yao, L., & Liu, W. (2017). Impacts of land use/cover change on terrestrial carbon stocks in Uganda.Physics and Chemistry of the Earth, Parts a/b/c,101, 195–203.

    Article  Google Scholar 

  • Zhang, Z., Hu, C., Wu, Z., Zhang, Z., Yang, S., & Yang, W. (2023a). Monitoring and analysis of ground subsidence in Shanghai based on PS-InSAR and SBAS-InSAR technologies.Scientific Reports,13(1), 8031.

    Article  CAS  Google Scholar 

  • Zhang, Z., Zhang, S., Hu, C., Zhang, X., Yang, S., Yan, H., & Zhang, Z. (2023b). Hazard assessment model of ground subsidence coupling AHP, RS and GIS–A case study of Shanghai.Gondwana Research,117, 344–362.

    Article  Google Scholar 

  • Zhao, M., He, Z., Du, J., Chen, L., Lin, P., & Fang, S. (2019). Assessing the effects of ecological engineering on carbon storage by linking the CA-Markov and InVEST models.Ecological Indicators,98, 29–38.

    Article  Google Scholar 

  • Zheng, H., & Zheng, H. (2023). Assessment and prediction of carbon storage based on land use/land cover dynamics in the coastal area of Shandong Province.Ecological Indicators,153, 110474.

    Article  CAS  Google Scholar 

  • Zhong, L., Wang, J., Zhang, X., & Ying, L. (2020). Effects of agricultural land consolidation on ecosystem services: Trade-offs and synergies.Journal of Cleaner Production,264, 121412.

    Article  Google Scholar 

  • Zhou, R., Lin, M., Gong, J., & Wu, Z. (2019). Spatiotemporal heterogeneity and influencing mechanism of ecosystem services in the Pearl River Delta from the perspective of LUCC.Journal of Geographical Sciences,29, 831–845.

    Article  Google Scholar 

  • Zhou, J., Zhao, Y., Huang, P., Zhao, X., Feng, W., Li, Q., & Liu, C. (2020). Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area.China. Ecological Indicators,118, 106803.

    Article  Google Scholar 

  • Zhu, E., Deng, J., Zhou, M., Gan, M., Jiang, R., Wang, K., & Shahtahmassebi, A. (2019). Carbon emissions induced by land-use and land-cover change from 1970 to 2010 in Zhejiang China.Science of the Total Environment,646, 930–939.

    Article  CAS  Google Scholar 

  • Zhuang, Z., Xie, M., & Zhang, W. (2022). Temporal and spatial changes and multi-scenario simulation prediction of carbon storage based on FLUS-InVEST model: A case study of Chengdu-Deyang-Meishan-Ziyang area.Landscape Architecture,29(5), 38–44.

    Google Scholar 

Download references

Acknowledgements

This study was funded by National Key R&D Program of China (2022YFB3903604). The Central Government to Guide Local Scientific and Technological Development(22ZY1QA005). The National Natural Science Foundation of China (41930101, 42161069) and was partially supported by LZJTU EP 201806, the Key Research and Development Project of Lanzhou Jiaotong University (LZJTU-ZDYF2301) and Natural Science Foundation of Gansu Province(23JRRA870). The authors are grateful to the editors and reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Zhang.

Ethics declarations

Competing interest

The authors declare there are no competing interests.

Additional information

Publisher's Note

Springer Nature remainsneutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Zhang, Z., Feng, D. et al. Assessment of the impact of land use/land cover change on carbon storage in Chengdu, China, in the context of carbon peaking and carbon neutrality, 2000–2030. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04797-x

Keywords

Navigation