Skip to main content

Advertisement

Log in

Spatiotemporal modeling of urban land cover changes and carbon storage ecosystem services: case study in Qaem Shahr County, Iran

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

Considering the level of carbon stored in green lands, vast forest ecosystems with large volumes of biomass can play an important role in carbon sequestration and reduction of man-made CO2 emissions. Accordingly, the present study aims to determine the amount of carbon stored in Qaem Shahr County, north of Iran, as part of the remaining Hyrcanian forests. To achieve the research objective, land cover (LC) classification is performed by object-oriented classification. Also, LC changes are modeled for 2027 using CA–Markov model. Then, the carbon storage sub-model of Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model is used to estimate carbon storage level and distribution in the area under study. The results show that the highest amount of stored carbon is in forest areas, which is estimated to be 18.228 megagram (Mg) in 2014. Also, results show that in case of continuation of the current trends, the amount of stored carbon will be reduced by 321,216.68 Mg by 2027. The main reason of this reduction is attributed to the decrease in plant biomass and soil affected by this ecosystem, which has been caused by increased built area in the region, destruction of forest, and range of LCs in recent years. Finally, the results show that urban development and the built lands, in general, have a considerable effect on reducing carbon storage in a nearby town with broad-leaved forests as expected. Therefore, proper planning and management of the development process is necessary in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aburas, M. M., Abdullah, S. H., Ramli, M. F., Ash’aari, Z. H., & Ahamad, M. S. S. (2018). Simulating and monitoring future land-use trends using CA–Markov and LCM models. In IOP conference series: Earth and environmental science (Vol. 169, No. 1, p. 012050). IOP Publishing.

  • Al-shalabi, M., Billa, L., Pradhan, B., Mansor, S., & Al-Sharif, A. A. (2013). Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: The case of Sana’a metropolitan city, Yemen. Environmental Earth Sciences, 70(1), 425–437.

    Google Scholar 

  • Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265–275.

    Google Scholar 

  • Azimi, N. (2000). Land use pattern in Gilan Province. In 4th Convention on environmental contaminants. Gilan, Iran. (in Persian).

  • Baral, H., Keenan, R. J., Sharma, S. K., Stork, N. E., & Kasel, S. (2014). Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecological Indicators, 36, 552–562.

    Google Scholar 

  • Barredo, J. I., Kasanko, M., McCormick, N., & Lavalle, C. (2003). Modelling dynamic spatial processes: simulation of urban future scenarios through cellular automata. Landscape and Urban Planning, 64(3), 145–160.

    Google Scholar 

  • Batisani, N., & Yarnal, B. (2009). Urban expansion in Centre County, Pennsylvania: Spatial dynamics and landscape transformations. Applied Geography, 29(2), 235–249.

    Google Scholar 

  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3–4), 239–258.

    Google Scholar 

  • Berberoğlu, S., Akın, A., & Clarke, K. C. (2016). Cellular automata modeling approaches to forecast urban growth for adana, Turkey: A comparative approach. Landscape and Urban Planning, 153, 11–27.

    Google Scholar 

  • Bharath, H. A., Chandan, M. C., Vinay, S., & Ramachandra, T. V. (2018). Modelling urban dynamics in rapidly urbanising Indian cities. The Egyptian Journal of Remote Sensing and Space Science, 21(3), 201–210.

    Google Scholar 

  • Canadell, J. G., & Raupach, M. R. (2008). Managing forests for climate change mitigation. Science, 320(5882), 1456–1457.

    CAS  Google Scholar 

  • Capoor, K., & Ambrosi, P. (2009). State and trends of the carbon market 2009. Washington, D.C: The World Bank.

    Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM + , and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903.

    Google Scholar 

  • Chavez, P. S., Jr. (1988). An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sensing of Environment, 24(3), 459–479.

    Google Scholar 

  • Daba, M. H., & Dejene, S. W. (2018). The role of biodiversity and ecosystem services in carbon sequestration and its implication for climate change mitigation. Environmental Sciences and Natural Resources, 11(2), 1–10.

    Google Scholar 

  • De Groot, R. S., Alkemade, R., Braat, L., Hein, L., & Willemen, L. (2010). Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecological Complexity, 7, 260–272.

    Google Scholar 

  • Deep, S., & Saklani, A. (2014). Urban sprawl modeling using cellular automata. The Egyptian Journal of Remote Sensing and Space Science, 17(2), 179–187.

    Google Scholar 

  • Dezhkam, S., (2012). Study of the pattern of urban development changes by the landscape approach (Case Study: Rasht city). Master of Science thesis in Natural Resources (majoring in Environment), College of Natural Resources and Agriculture, University of Tehran. Iran.

  • Dubovyk, O., Sliuzas, R., & Flacke, J. (2011). Spatio-temporal modelling of informal settlement development in Sancaktepe district, Istanbul, Turkey. ISPRS Journal of Photogrammetry and Remote Sensing, 66(2), 235–246.

    Google Scholar 

  • Eastman, J. R., Van Fossen, M. E., & Solarzano, L. A. (2005). Transition potential modeling for land cover change. In GIS, spatial analysis and modeling. California: ESRI Press.

  • Ebrahimipour, A., Saadat, M., & Farshchin, A. (2016). Prediction of urban growth through cellular automata-Markov chain. Bulletin de la Société Royale des Sciences de Liège, 85, 824–839.

    Google Scholar 

  • Egoh, B., Reyers, B., Rouget, M., Richardson, D. M., Le Maitre, D. C., & van Jaarsveld, A. S. (2008). Mapping ecosystem services for planning and management. Agriculture, Ecosystems & Environment, 127(1–2), 135–140.

    Google Scholar 

  • Eigenbrod, F., Bell, V. A., Davies, H. N., Heinemeyer, A., Armsworth, P. R., & Gaston, K. J. (2011). The impact of projected increases in urbanization on ecosystem services. Proceedings of the Royal Society B: Biological Sciences, 278(1722), 3201–3208.

    CAS  Google Scholar 

  • Falahatkar, S., Soffianian, A. R., Khajeddin, S. J., Ziaee, H. R., & Nadoushan, M. A. (2011). Integration of remote sensing data and GIS for Prediction of Land cover map. International Journal of Geomatics and Geosciences, 1(4), 847–864.

    Google Scholar 

  • Fang, S., Gertner, G. Z., Sun, Z., & Anderson, A. A. (2005). The impact of interactions in spatial simulation of the dynamics of urban sprawl. Landscape and Urban Planning, 73(4), 294–306.

    Google Scholar 

  • Feng, Y. (2017). Modeling dynamic urban land-use change with geographical cellular automata and generalized pattern search-optimized rules. International Journal of Geographical Information Science, 31(6), 1198–1219.

    Google Scholar 

  • Gilabert, M. A., Conese, C., & Maselli, F. (1994). An atmospheric correction method for the automatic retrieval of surface reflectances from TM images. International Journal of Remote Sensing, 15(10), 2065–2086.

    Google Scholar 

  • Grimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., et al. (2008). Global change and the ecology of cities. Science, 319(5864), 756–760.

    CAS  Google Scholar 

  • Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101–112.

    Google Scholar 

  • Hamilton, K., Sjardin, M., Marcello, T., & Xu, G. (2008). Forging a Frontier: State of the voluntary carbon markets 2008. New York: Ecosystem Marketplace & New Carbon Finance.

    Google Scholar 

  • Han, N., Du, H., Zhou, G., Sun, X., Ge, H., & Xu, X. (2014). Object-based classification using SPOT-5 imagery for Moso bamboo forest mapping. International Journal of Remote Sensing, 35(3), 1126–1142.

    Google Scholar 

  • He, C., Zhang, D., Huang, Q., & Zhao, Y. (2016). Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environmental Modelling and Software, 75, 44–58.

    Google Scholar 

  • Heal, G. M., Barbier, E. B., Boyle, K. J., Covich, A. P., Gloss, S. P., Hershner, C. H., et al. (2005). Valuing ecosystem services: Toward better environmental decision-making. Washington, D.C: National Academies Press.

    Google Scholar 

  • Houet, T., & Hubert-Moy, L. (2006). Modeling and projecting land-use and land-cover changes with Cellular Automaton in considering landscape trajectories. EARSeL eProceedings, European Association of Remote Sensing Laboratories, 5(1), 63–76.

    Google Scholar 

  • Hua, A. K. (2017). Application of CA–Markov model and land use/land cover changes in Malacca River Watershed, Malaysia. Applied Ecology and Environmental Research, 15(4), 605–622.

    Google Scholar 

  • Huang, B., Xie, C., & Tay, R. (2010). Support vector machines for urban growth modeling. Geoinformatica, 14(1), 83–93.

    Google Scholar 

  • Hutyra, L. R., Yoon, B., Hepinstall-Cymerman, J., & Alberti, M. (2011). Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landscape and Urban Planning, 103(1), 83–93.

    Google Scholar 

  • Imhoff, M. L., Bounoua, L., DeFries, R., Lawrence, W. T., Stutzer, D., Tucker, C. J., et al. (2004). The consequences of urban land transformation on net primary productivity in the United States. Remote Sensing of Environment, 89(4), 434–443.

    Google Scholar 

  • Jantz, C. A., Goetz, S. J., & Shelley, M. K. (2004). Using the SLEUTH urban growth model to simulate the impacts of future policy scenarios on urban land use in the Baltimore-Washington metropolitan area. Environment and Planning B: Planning and Design, 31(2), 251–271.

    Google Scholar 

  • Jorgense, L. (2010). Newsletter of the Global Land Project International Project Office GLP News GLP Nodal Offices Newsletter of the Global Land Project International Project Office G Pn New E WS; GLP: Taipei, Taiwan.

  • Kamusoko, C., Aniya, M., Adi, B., & Manjoro, M. (2009). Rural sustainability under threat in Zimbabwe-simulation of future land use/cover changes in the Bindura district based on the Markov-cellular automata model. Applied Geography, 29(3), 435–447.

    Google Scholar 

  • Kamusoko, C., & Gamba, J. (2015). Simulating urban growth using a random forest-cellular automata (RF-CA) model. ISPRS International Journal of Geo-Information, 4(2), 447–470.

    Google Scholar 

  • Karnieli, A., Ben-Dor, E., Bayarjargal, Y., & Lugasi, R. (2004). Radiometric saturation of Landsat-7 ETM + data over the Negev Desert (Israel): Problems and solutions. International Journal of Applied Earth Observation and Geoinformation, 5(3), 219–237.

    Google Scholar 

  • Khoshgoftar, M, Taleei, M, Malekpour, P. (2010). Spatial-temporal modeling of urban growth: A method based on an integration of automated cell—Markov chain. In 16th National convention on Geomatics, Iran. (in Persian).

  • Kumar, S., Radhakrishnan, N., & Mathew, S. (2014). Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5(2), 145–156.

    Google Scholar 

  • Kvg, R. K., & Barik, D. K. (2018). Assessment of carbon storage and erosion using invest model in Visakhapatnam district, Andhra Pradesh. Journal of Rural Development, 37(2), 207–220.

    Google Scholar 

  • Lawler, J. J., Lewis, D. J., Nelson, E., Plantinga, A. J., Polasky, S., Withey, J. C., et al. (2014). Projected land-use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Sciences, 111(20), 7492–7497.

    CAS  Google Scholar 

  • Leh, M. D., Matlock, M. D., Cummings, E. C., & Nalley, L. L. (2013). Quantifying and mapping multiple ecosystem services change in West Africa. Agriculture, Ecosystems & Environment, 165, 6–18.

    Google Scholar 

  • Li, C., Zhao, J., Thinh, N., & Xi, Y. (2018). Assessment of the effects of urban expansion on terrestrial carbon storage: A case study in Xuzhou City, China. Sustainability, 10(3), 647.

    Google Scholar 

  • Li, X., & Gong, P. (2016). Urban growth models: Progress and perspective. Science Bulletin, 61(21), 1637–1650.

    Google Scholar 

  • Liu, G., & Zhao, Z. (2018). Analysis of carbon storage and its contributing factors—A case study in the Loess Plateau (China). Energies, 11(6), 1596.

    Google Scholar 

  • Liu, Y., Hu, Y., Long, S., Liu, L., & Liu, X. (2017). Analysis of the effectiveness of urban land-use-change models based on the measurement of spatio-temporal, dynamic urban growth: A cellular automata case study. Sustainability, 9(5), 796.

    Google Scholar 

  • Luo, J., & Wei, Y. D. (2009). Modeling spatial variations of urban growth patterns in Chinese cities: The case of Nanjing. Landscape and Urban Planning, 91(2), 51–64.

    Google Scholar 

  • Maes, J., Egoh, B., Willemen, L., Liquete, C., Vihervaara, P., Schägner, J. P., et al. (2012). Mapping ecosystem services for policy support and decision making in the European Union. Ecosystem Services, 1(1), 31–39.

    Google Scholar 

  • Malik, A., & Abdalla, R. (2017). Agent-based modelling for urban sprawl in the region of Waterloo, Ontario, Canada. Modeling Earth Systems and Environment, 3(1), 7.

    Google Scholar 

  • Mas, J. F., Kolb, M., Paegelow, M., Olmedo, M. T. C., & Houet, T. (2014). Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling and Software, 51, 94–111.

    Google Scholar 

  • Modica, G., Solano, F., Merlino, A., Di Fazio, S., Barreca, F., Laudari, L., et al. (2016). Using Landsat 8 imagery in detecting cork oak (Quercus suber L.) woodlands: A case study in Calabria (Italy). Journal of Agricultural Engineering, 47(4), 205–215.

    Google Scholar 

  • Moghadam, H. S., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140–149.

    Google Scholar 

  • Mohammadi, Z., Mohammadi, L. S., Peter, L., & Leif, O. (2017). Estimating the aboveground carbon sequestration and its economic value (case study: Iranian Caspian forests). Journal of Forest Science, 63(11), 511–518.

    Google Scholar 

  • Moran, M. S., Jackson, R. D., Slater, P. N., & Teillet, P. M. (1992). Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sensing of Environment, 41(2–3), 169–184.

    Google Scholar 

  • Ni, J. (2001). Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change. Climatic Change, 49(3), 339–358.

    CAS  Google Scholar 

  • Nikodinoska, N., Paletto, A., Pastorella, F., Granvik, M., & Franzese, P. P. (2018). Assessing, valuing and mapping ecosystem services at city level: The case of Uppsala (Sweden). Ecological Modelling, 368, 411–424.

    Google Scholar 

  • Norris, J. R. (1997). Markov chains (1st ed.). London: Cambridge University Press.

    Google Scholar 

  • Pagiola, S. (2008). Payments for environmental services in Costa Rica. Ecological Economics, 65(4), 712–724.

    Google Scholar 

  • Paquit, J. C., & Mindaña, F. W. (2017). Modeling the spatial pattern of carbon stock in Central Mindanao University using inVEST tool. Biodiversity and Environmental Sciences, 10(4), 103–113.

    Google Scholar 

  • Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: A land transformation model. Computers, Environment and Urban Systems, 26(6), 553–575.

    Google Scholar 

  • Poelmans, L., & Van Rompaey, A. (2010). Complexity and performance of urban expansion models. Computers, Environment and Urban Systems, 34(1), 17–27.

    Google Scholar 

  • Rimal, B., Sharma, R., Kunwar, R., Keshtkar, H., Stork, N. E., Rijal, S., et al. (2019). Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal. Ecosystem Services, 38, 100963.

    Google Scholar 

  • Rimal, B., Zhang, L., Keshtkar, H., Haack, B., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and Markov chain. ISPRS International Journal of Geo-Information, 7(4), 154–175.

    Google Scholar 

  • Rimal, B., Zhang, L., Keshtkar, H., Wang, N., & Lin, Y. (2017). Monitoring and modeling of spatiotemporal urban expansion and land-use/land-cover change using integrated Markov chain cellular automata model. ISPRS International Journal of Geo-Information, 6(9), 288.

    Google Scholar 

  • Saadati, S., Motevallian, S., Rheinheimer, D., & Najafi, H. (2013). Indicators for sustainable management of wetland ecosystems using a DPSIR approach: A case study in Iran. In 6th International perspective on water resources & the environment conference (IPWE). Wuhan. China.

  • Sallustio, L., Quatrini, V., Geneletti, D., Corona, P., & Marchetti, M. (2015). Assessing land take by urban development and its impact on carbon storage: Findings from two case studies in Italy. Environmental Impact Assessment Review, 54, 80–90.

    Google Scholar 

  • Salman Mahini, A., & Kamyab, H. (2009). Applied remote sensing and GIS with the software IDRISI. Tehran: Mehre Mahdis Press. (In Persian).

    Google Scholar 

  • Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3–4), 938–943.

    Google Scholar 

  • Shen, Q., Chen, Q., Tang, B., Yeung, S., Hu, Y., & Cheung, G. (2009). A system dynamics model for the sustainable land use planning and development. Habitat International, 33(1), 15–25.

    Google Scholar 

  • Sil, Â., Fonseca, F., Gonçalves, J., Honrado, J., Marta-Pedroso, C., Alonso, J., et al. (2017). Analysing carbon sequestration and storage dynamics in a changing mountain landscape in Portugal: insights for management and planning. International Journal of Biodiversity Science, Ecosystem Services & Management, 13(2), 82–104.

    Google Scholar 

  • Sothe, C., Almeida, C., Liesenberg, V., & Schimalski, M. (2017). Evaluating sentinel-2 and landsat-8 data to map sucessional forest stages in a subtropical forest in southern brazil. Remote Sensing, 9(8), 838.

    Google Scholar 

  • Statistical Center of Iran. (1996). Report of General Population and Housing Census in 1996. Retrieved November 9, 2017, from https://www.amar.org.ir.

  • Statistical Center of Iran. (2016). Report of General Population and Housing Census in 2016. Retrieved November 9, 2017, from https://www.amar.org.ir.

  • Stern, N. (2007). The economics of climate change: The Stern review. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sumarga, E., & Hein, L. (2014). Mapping ecosystem services for land use planning, the case of Central Kalimantan. Environmental Management, 54(1), 84–97.

    Google Scholar 

  • Tajbakhsh, M., Memarian, H., & Shahrokhi, Y. (2016). Analyzing and modeling urban sprawl and land use changes in a developing city using a CA–Markovian approach. Global Journal of Environmental Science and Management, 2(4), 397–410.

    Google Scholar 

  • Tallis, H. T., Ricketts, T., Guerry, A. D., Wood S. A., Sharp, R., Nelson, E., & Chaplin-Kramer, R. (2013). InVEST 2.6.0 User’s Guide. The Natural Capital Project, Stanford.

  • Tayyebi, A., Delavar, M. R., Yazdanpanah, M. J., Pijanowski, B. C., Saeedi, S., & Tayyebi, A. H. (2010). A spatial logistic regression model for simulating land use patterns: a case study of the Shiraz Metropolitan area of Iran. In E. Chuvieco, J. Li, & X. Yang (Eds.), Advances in earth observation of global change (pp. 27–42). Dordrecht: Springer.

    Google Scholar 

  • Teillet, P. M., Guindon, B., & Goodenough, D. G. (2008). On the slope-aspect correction of multispectral scanner data. Remote Sensing, 8(2), 84–106.

    Google Scholar 

  • UN. (2018). 68% of the world population projected to live in urban areas by 2050. https://www.un.org/development/desa/en/news/population/2018-revision-of-worldurbanization-prospects.html. Accessed 16 May 2018.

  • Verburg, P. H., Overmars, K. P., Huigen, M. G., de Groot, W. T., & Veldkamp, A. (2006). Analysis of the effects of land use change on protected areas in the Philippines. Applied Geography, 26(2), 153–173.

    Google Scholar 

  • Wang, W., Li, W., Zhang, C., & Zhang, W. (2018). Improving object-based land use/cover classification from medium resolution imagery by Markov chain geostatistical post-classification. Land, 7(1), 31.

    Google Scholar 

  • Wu, C., Deng, J., Wang, K., Ligang, M., & Shah Tahmassebi, A. (2016). Object-based classification approach for greenhouse mapping using Landsat-8 imagery. Agricultural and Biological Engineering, 9(1), 79–88.

    Google Scholar 

  • Zehtabian, G. H., Khosravi, H., & Masoudi, R. (2012). Restoration and management of wetlands in desert ecosystem of Iran. In International conference on transport, environment and civil engineering. Kuala Lumpur, Malaysia.

  • Zeng, Y. N., Wu, G. P., Zhan, F. B., & Zhang, H. H. (2008). Modeling spatial land use pattern using autologistic regression. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37, 115–118.

    Google Scholar 

  • Zhang, C., Tian, H., Chen, G., Chappelka, A., Xu, X., Ren, W., et al. (2012). Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environmental Pollution, 164, 89–101.

    CAS  Google Scholar 

  • Zhou, X., Jancso, T., Chen, C., & Verone, M. W. (2012). Urban land cover mapping based on object oriented classification using WorldView 2 satellite remote sensing images. In International scientific conference on sustainable development & ecological footprint (pp. 26–27).

  • Zoghi, M., Ehsani, A. H., Sadat, M., Javad Amiri, M., & Karimi, S. (2017). Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN. Renewable and Sustainable Energy Reviews, 68, 986–996.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the three reviewers for their constructive comments on correction and improvement in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Malekmohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadat, M., Zoghi, M. & Malekmohammadi, B. Spatiotemporal modeling of urban land cover changes and carbon storage ecosystem services: case study in Qaem Shahr County, Iran. Environ Dev Sustain 22, 8135–8158 (2020). https://doi.org/10.1007/s10668-019-00565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00565-4

Keywords

Navigation