Skip to main content
Log in

Uncertainty-based analysis of water balance components: a semi-arid groundwater-dependent and data-scarce area, Iran

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In regions where gauging is lacking or limited, the development of a methodology for water balance assessment is a key challenge. Water balance assessment is a significant task in managing the sustainable use of water resources. This study aims to improve the accuracy of water balance components including actual evapotranspiration and groundwater recharge rate in the Hashtgerd study area, Iran. Groundwater extraction volumes are determined based on two-period data collection; while precipitation, evapotranspiration, and groundwater storage change are calculated from annual datasets. To address the data-scarce problem, as an additional measure of actual evapotranspiration, satellite measurements are used to improve recharge rate accuracy. To understand the impact of satellite data uncertainties on water resources studies, each estimated water balance component is compared to observation data, and the uncertainty of these components is quantified using statistical methods, variability, and standard error. The results show that the Hashtgerd aquifer receives 199 MCM from the main drains which is a major part of the water inflow. The extraction of wells is one of the most significant outflow components of the aquifer (i.e., 284 MCM); while water loss by evaporation is estimated to be 207 MCM of the outflow. The finding shows that satellite-based evapotranspiration can reduce recharge uncertainty which can improve the resolution of groundwater balance. This study supports that the aquifer is under severe environmental pressure. One of those concerns is that groundwater levels decreased by 0.92 m per year between 2000 and 2019.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abraham, T., Liu, Y., Tekleab, S., & Hartmann, A. (2021). Quantifying the regional water balance of the Ethiopian Rift Valley Lake basin using an uncertainty estimation framework. Hydrology and Earth System Sciences Discussions, 1–25.

  • Abraham, T., Liu, Y., Tekleab, S., & Hartmann, A. (2022). Prediction at ungauged catchments through parameter optimization and uncertainty estimation to quantify the regional water balance of the Ethiopian rift valley Lake Basin. Hydrology, 9(8), 150.

    Article  Google Scholar 

  • Adesogan, S. O., & Sasanya, B. F. (2023). Efficiency of indirect and estimated evapotranspiration methods in South Western Nigeria. International Journal of Hydrology Science and Technology, 15(1), 64–77.

    Article  Google Scholar 

  • Akbar, R., Short Gianotti, D., McColl, K. A., Haghighi, E., Salvucci, G. D., & Entekhabi, D. (2018). Hydrological storage length scales represented by remote sensing estimates of soil moisture and precipitation. Water Resources Research, 54(3), 1476–1492.

    Article  ADS  Google Scholar 

  • Akbari, F., Shourian, M., & Moridi, A. (2022). Assessment of the climate change impacts on the watershed-scale optimal crop pattern using a surface-groundwater interaction hydro-agronomic model. Agricultural Water Management, 265, 107508.

    Article  Google Scholar 

  • Amorim, J. D. S., Viola, M. R., Junqueira, R., de Mello, C. R., Bento, N. L., & Avanzi, J. C. (2022). Quantifying the climate change-driven impacts on the hydrology of a data-scarce watershed located in the Brazilian Tropical Savanna. Hydrological Processes, 36(7), e14638.

    Article  Google Scholar 

  • Anand, J., Gosain, A. K., Khosa, R., & Srinivasan, R. (2018). Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. Journal of Hydrology: Regional Studies, 16, 32–53.

    Google Scholar 

  • Ashrafianfar, N., Busch, W., Maryam Dehghani, S., & Tabari, M. M. R. (2014). DInSAR time series of ALOS PALSAR and ENVISAT ASAR data for monitoring hashtgerd land subsidence due to overexploitation of groundwater. Photogrammetrie-Fernerkundung-Geoinformation, 497–510.

  • Babaei, M., & Ketabchi, H. (2022). Determining Groundwater recharge rate with a distributed model and remote sensing techniques. Water Resources Management, 36(14), 5401–5423.

    Article  Google Scholar 

  • Babaei, M., Mahmoodzadeh, D., Ketabchi, H., & Saadi, T. (2022). Estimation of water balance components and analysis of variations using modeling and remote sensing approaches (Hashtgerd Study Area, Alborz Province). Iran-Water Resources Research, 18(1), 31–53.

    Google Scholar 

  • Bastiaanssen, W. G. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin. Turkey. Journal of Hydrology, 229(1–2), 87–100.

    Article  ADS  Google Scholar 

  • Bastiaanssen, W. G., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. Journal of Hydrology, 212, 198–212.

    Article  ADS  Google Scholar 

  • Bastiaanssen, W. G. M., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1), 85–93.

    Article  Google Scholar 

  • Bennett, K. E., Urrego Blanco, J. R., Jonko, A., Bohn, T. J., Atchley, A. L., Urban, N. M., & Middleton, R. S. (2018). Global sensitivity of simulated water balance indicators under future climate change in the Colorado Basin. Water Resources Research, 54(1), 132–149.

    Article  ADS  Google Scholar 

  • Bouizrou, I., Bouadila, A., Aqnouy, M., & Gourfi, A. (2023). Assessment of remotely sensed precipitation products for climatic and hydrological studies in arid to semi-arid data-scarce region, central-western Morocco (p. 100976). Society and Environment.

    Google Scholar 

  • Burt, C. M. (1999). Irrigation water balance fundamentals. In Conference on benchmarking irrigation system performance using water measurement and water balances in San Luis Obispo.

  • Castellazzi, P., Martel, R., Rivera, A., Huang, J., Pavlic, G., Calderhead, A. I., Chaussard, E., Garfias, J., & Salas, J. (2016). Groundwater depletion in Central Mexico: Use of GRACE and InSAR to support water resources management. Water Resources Research, 52(8), 5985–6003.

    Article  ADS  Google Scholar 

  • Chan, S. K., Bindlish, R., O’Neill, P., Jackson, T., Njoku, E., Dunbar, S., Chaubell, J., Piepmeier, J., Yueh, S., Entekhabi, D., & Colliander, A. (2018). Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sensing of Environment, 204, 931–941.

    Article  PubMed  ADS  Google Scholar 

  • Charles, E. G., Behroozi, C., Schooley, J., & Hoffman, J. L. (1993). A method of evaluating ground-water-recharge areas in New Jersey. NJ Geological Survey Report GSR-3.

    Google Scholar 

  • Chen, D., Gao, G., Xu, C. Y., Guo, J., & Ren, G. (2005). Comparison of the Thornthwaite method and pan data with the standard Penman–Monteith estimates of reference evapotranspiration in China. Climate Research, 28(2), 123–132. https://doi.org/10.3354/CR028123

    Article  CAS  ADS  Google Scholar 

  • Closas, A., Molle, F., & Hernández-Mora, N. (2017). Sticks and carrots to manage groundwater over-abstraction in La Mancha, Spain. Agricultural Water Management, 194, 113–124.

    Article  Google Scholar 

  • de Andrade, B. C. C., de Andrade Pinto, E. J., Ruhoff, A., & Senay, G. B. (2021). Remote sensing-based actual evapotranspiration assessment in a data-scarce area of Brazil: A case study of the Urucuia Aquifer System. International Journal of Applied Earth Observation and Geoinformation, 98, 102298.

    Article  Google Scholar 

  • De Sales, F., & Rother, D. E. (2020). A New Coupled Modeling Approach to Simulate Terrestrial Water Storage in Southern California. Water, 12(3), 808.

    Article  Google Scholar 

  • Dile, Y. T., Ayana, E. K., Worqlul, A. W., Xie, H., Srinivasan, R., Lefore, N., You, L., & Clarke, N. (2020). Evaluating satellite-based evapotranspiration estimates for hydrological applications in data-scarce regions: A case in Ethiopia. Science of the Total Environment, 743, 140702.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Engeland, K., Xu, C. Y., & Gottschalk, L. (2005). Assessing uncertainties in a conceptual water balance model using Bayesian methodology/Estimation bayésienne des incertitudes au sein d’une modélisation conceptuelle de bilan hydrologique. Hydrological Sciences Journal, 50(1), 1–20.

    Article  Google Scholar 

  • Er-Raki, S., Ezzahar, J., Merlin, O., Amazirh, A., Hssaine, B. A., Kharrou, M. H., Khabba, S., & Chehbouni, A. (2021). Performance of the HYDRUS-1D model for water balance components assessment of irrigated winter wheat under different water managements in semi-arid region of Morocco. Agricultural Water Management, 244, 106546.

    Article  Google Scholar 

  • de Fraiture, C., Cai, X., Amarasinghe, U., Rosegrant, M., & Molden, D. (2004). Does international cereal trade save water?: The impact of virtual water trade on global water use (Vol. 4). IWMI.

  • Gelebo, A. H., Kasiviswanathan, K. S., & Khare, D. (2022). Assessment of the spatial–temporal distribution of groundwater recharge in data-scarce large-scale African river basin. Environmental Monitoring and Assessment, 194(3), 157.

    Article  PubMed  Google Scholar 

  • Ghadimi, S., & Ketabchi, H. (2019). Possibility of cooperative management in groundwater resources using an evolutionary hydro-economic simulation-optimization model. Journal of Hydrology, 578, 124094.

    Article  Google Scholar 

  • Govind, A., Wery, J., Dessalegn, B., Elmahdi, A., Bishaw, Z., Nangia, V., Biradar, C., Nisa, Z. U., Abay, K., Amarnath, G., Breisinger, C., Ibrahim, N. A., Kleinermann, C., Niane, A. A., & Thijssen, M. (2021). A holistic framework towards developing a climate-smart agri-food system in the Middle East and North Africa: A regional dialogue and synthesis. Agronomy, 11(11), 2351.

    Article  Google Scholar 

  • Gowri, R., Dey, P., & Mujumdar, P. P. (2021). A hydro-climatological outlook on the long-term availability of water resources in Cauvery river basin. Water Security, 14, 100102.

    Article  Google Scholar 

  • Gudulas, K., Voudouris, K., Soulios, G., & Dimopoulos, G. (2013). Comparison of different methods to estimate actual evapotranspiration and hydrologic balance. Desalination and Water Treatment, 51(13–15), 2945–2954.

    Article  Google Scholar 

  • Hesamfar, F., Ketabchi, H., & Ebadi, T. (2023a). Simulation-based multi-objective optimization framework for sustainable management of coastal aquifers in semi-arid regions. Journal of Environmental Management, 338, 117785.

    Article  CAS  PubMed  Google Scholar 

  • Hesamfar, F., Ketabchi, H., & Ebadi, T. (2023b). Multi-dimensional management framework on fresh groundwater lens of Kish Island in the Persian Gulf, Iran. Journal of Environmental Management, 347, 119032.

    PubMed  Google Scholar 

  • Huang, Z., Yeh, P. J. F., Jiao, J. J., Luo, X., Pan, Y., Long, Y., Zhang, C., & Zheng, L. (2023). A new approach for assessing groundwater recharge by combining GRACE and baseflow with case studies in karst areas of southwest China. Water Resources Research, 59(2), e2022WR032091.

    Article  ADS  Google Scholar 

  • Indika, S., Wei, Y., Cooray, T., Ritigala, T., Jinadasa, K. B. S. N., Weragoda, S. K., & Weerasooriya, R. (2022). Groundwater-based drinking water supply in Sri Lanka: Status and perspectives. Water, 14(9), 1428.

    Article  CAS  Google Scholar 

  • Izady, A., Joodavi, A., Ansarian, M., Shafiei, M., Majidi, M., Davary, K., Ziaei, A. N., Ansari, H., Nikoo, M. R., Al-Maktoumi, A., & Chen, M. (2022). A scenario-based coupled SWAT-MODFLOW decision support system for advanced water resource management. Journal of Hydroinformatics, 24(1), 56–77.

    Article  Google Scholar 

  • Jarosiewicz, A., & Witek, Z. (2014). Where do nutrients in an inlet-less lake come from? The water and nutrient balance of a small mesotrophic lake. Hydrobiologia, 724, 157–173.

    Article  CAS  Google Scholar 

  • Jonoski, A., Ahmed, T., Almasri, M. N., & Abu-Saadah, M. (2023). Decision support system for sustainable exploitation of the eocene aquifer in the West Bank. Palestine. Water, 15(2), 365.

    CAS  Google Scholar 

  • Karimi, L., Motagh, M., & Entezam, I. (2019). Modeling groundwater level fluctuations in Tehran aquifer: Results from a 3D unconfined aquifer model. Groundwater for Sustainable Development, 8, 439–449.

    Article  Google Scholar 

  • Kayan, G., Türker, U., & Erten, E. (2022). A fuzzy logic framework to handle uncertainty in remote sensing-based hydrological data for water budget improvement across mid-and small-scale basins. Hydrological Processes, 36(11), e14740.

    Article  ADS  Google Scholar 

  • Ketabchi, H., & Jahangir, M. S. (2021). Influence of aquifer heterogeneity on sea level rise-induced seawater intrusion: A probabilistic approach. Journal of Contaminant Hydrology, 236, 103753.

    Article  CAS  PubMed  Google Scholar 

  • Khalaj, M., Kholghi, M., Saghafian, B., & Bazrafshan, J. (2019). Impact of climate variation and human activities on groundwater quality in northwest of Iran. Journal of Water Supply: Research and Technology-Aqua, 68(2), 121–135.

    Article  Google Scholar 

  • Laipelt, L., Kayser, R. H. B., Fleischmann, A. S., Ruhoff, A., Bastiaanssen, W., Erickson, T. A., & Melton, F. (2021). Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 178, 81–96.

    Article  ADS  Google Scholar 

  • Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X., & Zhang, M. (2017). A comparative study of potential evapotranspiration estimation by eight methods with FAO Penman–Monteith method in southwestern China. Water, 9(10), 734.

    Article  ADS  Google Scholar 

  • Losgedaragh, S. Z., & Rahimzadegan, M. (2018). Evaluation of SEBS, SEBAL, and METRIC models in estimation of the evaporation from the freshwater lakes (Case study: Amirkabir dam, Iran). Journal of Hydrology, 561, 523–531.

    Article  ADS  Google Scholar 

  • Mahmoodzadeh, D., & Karamouz, M. (2022). A hydroeconomic simulation-optimization framework to assess the cooperative game theory in coastal groundwater management. Journal of Water Resources Planning and Management, 148(1), 04021092.

    Article  Google Scholar 

  • Maihemuti, B., Simayi, Z., Alifujiang, Y., Aishan, T., Abliz, A., & Aierken, G. (2021). Development and evaluation of the soil water balance model in an inland arid delta oasis: Implications for sustainable groundwater resource management. Global Ecology and Conservation, 25, e01408.

    Article  Google Scholar 

  • Mammoliti, E., Fronzi, D., Mancini, A., Valigi, D., & Tazioli, A. (2021). WaterbalANce, a WebApp for thornthwaite-mather water balance computation: Comparison of applications in two european watersheds. Hydrology, 8(1), 34. https://doi.org/10.3390/HYDROLOGY8010034

    Article  Google Scholar 

  • McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model. US Geological Survey.

    Google Scholar 

  • Mehrazar, A., Massah Bavani, A. R., Gohari, A., Mashal, M., & Rahimikhoob, H. (2020). Adaptation of water resources system to water scarcity and climate change in the suburb area of megacities. Water Resources Management, 34, 3855–3877.

    Article  Google Scholar 

  • Mladenova, I. E., Bolten, J. D., Crow, W., Sazib, N., & Reynolds, C. (2020). Agricultural drought monitoring via the assimilation of SMAP soil moisture retrievals into a global soil water balance model. Frontiers in Big Data, 3, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • MOE, (2020). Energy balance. Ministry of Energy: Energy Balance Annual Report, Tehran.

  • Mohajerani, H., Zema, D. A., Lucas-Borja, M. E., & Casper, M. (2021). Understanding the water balance and its estimation methods. In Precipitation (pp. 193–221). Elsevier.

  • Mokadem, N., Redhaounia, B., Besser, H., Ayadi, Y., Khelifi, F., Hamad, A., Hamed, Y., & Bouri, S. (2018). Impact of climate change on groundwater and the extinction of ancient “Foggara” and springs systems in arid lands in North Africa: a case study in Gafsa basin (Central of Tunisia). Euro-Mediterranean Journal for Environmental Integration, 3, 1–14.

    Article  Google Scholar 

  • Moreira, A. A., Ruhoff, A. L., Roberti, D. R., de Arruda Souza, V., da Rocha, H. R., & de Paiva, R. C. D. (2019). Assessment of terrestrial water balance using remote sensing data in South America. Journal of Hydrology, 575, 131–147.

    Article  ADS  Google Scholar 

  • Mostafaei-Avandari, M., Ketabchi, H., & Shaker-Soureh, F. (2023). Managerial sustainability indices for improving the coastal groundwater decisions by a parallel simulation–optimization model. Environmental Monitoring and Assessment, 195(1), 100.

    Article  Google Scholar 

  • Ning, S., Ishidaira, H., & Wang, J. (2014). Statistical downscaling of GRACE-derived terrestrial water storage using satellite and GLDAS products. 土木学会論文集 B1 (水工学), 70(4), I_133–I_138.

  • Ochoa-González, G. H., Carreón-Freyre, D., Franceschini, A., Cerca, M., & Teatini, P. (2018). Overexploitation of groundwater resources in the faulted basin of Querétaro, Mexico: A 3D deformation and stress analysis. Engineering Geology, 245, 192–206.

    Article  Google Scholar 

  • Oguntunde, P. G., Abiodun, B. J., & Lischeid, G. (2017). Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa. Global and Planetary Change, 155, 121–132.

    Article  ADS  Google Scholar 

  • Osejo, B. B., Vargas, T. B., & Martinez, J. A. (2019). Spatial distribution of precipitation and evapotranspiration estimates from Worldclim and Chelsa datasets: Improving long-term water balance at the watershed-scale in the Urabá region of Colombia. International Journal of Sustainable Development and Planning, 14(2), 105–117.

    Article  Google Scholar 

  • Ouallali, A., Briak, H., Aassoumi, H., Beroho, M., Bouhsane, N., & Moukhchane, M. (2020). Hydrological foretelling uncertainty evaluation of water balance components and sediments yield using a multi-variable optimization approach in an external Rif’s catchment, Morocco. Alexandria Engineering Journal, 59(2), 775–789.

    Article  Google Scholar 

  • Panchanathan, A., Haghighi, A. T., & Oussalah, M. (2023). A multi-criteria approach for improving streamflow prediction in a rapidly urbanising data scarce catchment. International Journal of River Basin Management. https://doi.org/10.1080/15715124.2023.2188597

    Article  Google Scholar 

  • Piesse, M. (2020). Global water supply and demand trends point towards rising water insecurity.

  • Rajaeian, S., Ketabchi, H., & Ebadi, T. (2022). Water resources assessment in Hashtgerd study area based on system of environmental-economic accounting for water. Amirkabir Journal of Civil Engineering, 54(9), 3313–3332.

    Google Scholar 

  • Rajaeian, S., Ketabchi, H., & Ebadi, T. (2023) Investigation on quantitative and qualitative changes of groundwater resources using MODFLOW and MT3DMS: A case study of Hashtgerd aquifer, Iran. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-022-02904-4

    Article  Google Scholar 

  • Renard, B., Kavetski, D., Kuczera, G., Thyer, M., & Franks, S. W. (2010). Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors. Water Resources Research, 46(5), 1–22.

    Article  Google Scholar 

  • RIWEM (Research Institute of Water Engineering and Management, Tarbiat Modares University) (2022). Identification of uncertainties and errors in estimation of water balance components and providing the appropriate solutions. Alborz Regional Water Authority.

  • Rusli, S. R., Weerts, A. H., Taufiq, A., & Bense, V. F. (2021). Estimating water balance components and their uncertainty bounds in highly groundwater-dependent and data-scarce area: An example for the Upper Citarum basin. Journal of Hydrology: Regional Studies, 37, 100911.

    Google Scholar 

  • Sadeghi-Jahani, H., Ketabchi, H., & Shafizadeh-Moghadam, H. (2024). Spatiotemporal assessment of sustainable groundwater management using process-based and remote sensing indices: A novel approach. Science of the Total Environment, 170828, https://doi.org/10.1016/j.scitotenv.2024.170828

  • Saghi-Jadid, M., & Ketabchi, H. (2021). Result-based management approach for aquifer restoration problems using a combined numerical simulation–parallel evolutionary optimization model. Journal of Hydrology, 594, 25709.

    Article  ADS  Google Scholar 

  • Salehi Siavashani, N., Jimenez-Martinez, J., Vaquero, G., Elorza, F. J., Sheffield, J., Candela, L., & Serrat-Capdevila, A. (2021). Assessment of CHADFDM satellite-based input dataset for the groundwater recharge estimation in arid and data scarce regions. Hydrological Processes, 35(6), e14250.

    Article  ADS  Google Scholar 

  • Schmadel, N. M., Neilson, B. T., & Stevens, D. K. (2010). Approaches to estimate uncertainty in longitudinal channel water balances. Journal of Hydrology, 394(3–4), 357–369.

    Article  ADS  Google Scholar 

  • Shi, S., Zhong, Y., Zhao, J., Lv, P., Liu, Y., & Zhang, L. (2020). Land-use/land-cover change detection based on class-prior object-oriented conditional random field framework for high spatial resolution remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16.

    Article  Google Scholar 

  • Sidhu, B. S., Sharda, R., & Singh, S. (2021). An assessment of water footprint for irrigated rice in punjab. Journal of Agrometeorology, 23(1), 21–29.

    Article  Google Scholar 

  • Siegfried, T., Mujahid, A. U. H., Marti, B. S., Molnar, P., Karger, D. N., & Yakovlev, A. (2023). Assessing future hydrological impacts of climate change on high-mountain Central Asia: Insights from a stochastic soil moisture water balance model. Egusphere, 2023, 1–43.

    Google Scholar 

  • Taylor, J. (1997). Introduction to error analysis, the study of uncertainties in physical measurements.

  • Thornthwaite, C. W. (1957). Instructions and tables for computing potential evapotranspiration and the water balance. Publications on Climatology, 10, 185–310.

    Google Scholar 

  • Valipour, E., Ketabchi, H., Safari shali, R., & Morid, S. (2023). Equity, social welfare, and economic benefit efficiency in the optimal allocation of coastal groundwater resources. Water Resources Management, 37(8), 2969–2990.

    Article  Google Scholar 

  • Valipour, E., Ketabchi, H., Safari shali, R., & Morid, S. (2024). Water resources allocation: Interactions between equity/justice and allocation strategies. Water Resources Management, 38(2), 505–535.

    Article  Google Scholar 

  • Waters, R., Allen, R., Bastiaanssen, W., Tasumi, M., & Trezza, R. (2002). Sebal. Surface energy balance algorithms for land. Idaho Implementation. Advanced Training and Users Manual, Idaho.

  • Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402.

    Article  Google Scholar 

  • Wendland, E., Barreto, C. E. A. G., & Gomes, L. H. (2007). Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring. Journal of Hydrology, 342(3–4), 261–269.

    Article  ADS  Google Scholar 

  • White, W. N. (1932). A method of estimating ground-water supplies based on discharge by plants and evaporation from soil: Results of investigations in Escalante Valley, Utah (Vol. 659). US Government Printing Office.

  • Wigneron, J. P., Calvet, J. C., Pellarin, T., Van de Griend, A. A., Berger, M., & Ferrazzoli, P. (2003). Retrieving near-surface soil moisture from microwave radiometric observations: Current status and future plans. Remote Sensing of Environment, 85(4), 489–506.

    Article  ADS  Google Scholar 

  • Wouters, B., Gardner, A. S., & Moholdt, G. (2019). Global glacier mass loss during the GRACE satellite mission (2002–2016). Frontiers in Earth Science, 7, 96.

    Article  ADS  Google Scholar 

  • Wu, J., & Zeng, X. (2013). Review of the uncertainty analysis of groundwater numerical simulation. Chinese Science Bulletin, 58, 3044–3052.

    Article  ADS  Google Scholar 

  • Xu, C. Y. (2001). Statistical analysis of parameters and residuals of a conceptual water balance model–methodology and case study. Water Resources Management, 15, 75–92.

    Article  Google Scholar 

  • Yan, G., Mas, J. F., Maathuis, B. H. P., Xiangmin, Z., & Van Dijk, P. M. (2006). Comparison of pixel-based and object-oriented image classification approaches—A case study in a coal fire area, Wuda, Inner Mongolia. China. International Journal of Remote Sensing, 27(18), 4039–4055.

    Article  ADS  Google Scholar 

  • Yang, X., Chen, R., Meadows, M. E., Ji, G., & Xu, J. (2020). Modelling water yield with the InVEST model in a data scarce region of northwest China. Water Supply, 20(3), 1035–1045.

    Article  Google Scholar 

  • Zhang, L., Walker, G. R., & Dawes, W. R. (2002). Water balance modelling: Concepts and applications. ACIAR Monograph Series, 84, 31–47.

    Google Scholar 

  • Zhang, M., Teng, Y., Jiang, Y., Yin, W., Wang, X., Zhang, D., & Liao, J. (2022). Evaluation of terrestrial water storage changes over china based on GRACE solutions and water balance method. Sustainability, 14(18), 11658.

    Article  Google Scholar 

  • Zhang, X. Y., Yue-Yu, S. U. I., Zhang, X. D., Kai, M. E. N. G., & Herbert, S. J. (2007). Spatial variability of nutrient properties in black soil of northeast China. Pedosphere, 17(1), 19–29.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from Alborz Regional Water Authority and Research Institute of Water Engineering and Management of Tarbiat Modares University (Contract No. 05/98/4748/101), in supplying the part of required data for a real-case study described in this paper.

Funding

This work was supported by Alborz Regional Water Authority and Research Institute of Water Engineering and Management of Tarbiat Modares University (Contract No. 05/98/4748/101), in supplying the part of required data for a real-case study described in this paper.

Author information

Authors and Affiliations

Authors

Contributions

HK contributed to supervision, conceptualization, methodology, investigation, software, writing and editing; DM contributed to conceptualization, methodology, investigation, visualization, writing and editing; EV contributed to methodology, writing and editing; TS contributed to methodology and data. All authors read and approved the final paper.

Corresponding author

Correspondence to Hamed Ketabchi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ketabchi, H., Mahmoodzadeh, D., Valipour, E. et al. Uncertainty-based analysis of water balance components: a semi-arid groundwater-dependent and data-scarce area, Iran. Environ Dev Sustain (2024). https://doi.org/10.1007/s10668-024-04507-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10668-024-04507-7

Keywords

Navigation