Skip to main content

Advertisement

Log in

Investigating cooperation between competitive manufacturers under the energy performance contracting mechanism

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

In a duopoly market, a superior manufacturer owns more efficient energy-saving technology in production than the inferior manufacturer. To improve the efficiency of energy-saving technology, technical cooperation is a critical option for the inferior manufacturer. However, unaffordable cooperation fees are generally regarded as one of the most significant barriers in technological advancement. To address this issue, this paper investigates cooperation between competitive manufacturers under the energy performance contracting (EPC) mechanism by developing game theoretical models. The findings show that (i) when both manufacturers engage in EPC cooperation, the market equilibrium price decreases and overall market product sales increase. (ii) The EPC cooperation decisions of the two manufacturers depend on the market size and the revenue sharing ratio. (iii) When the market is small, the optimal choice of the inferior manufacturer is to engage in EPC cooperation with the superior manufacturer. (iv) When the superior manufacturer retains part of its technology under EPC, there exists an optimal level of technical cooperation that can yield optimal benefits for both manufacturers. The findings are valuable not only in understanding competitive manufacturers’ optimal cooperation decisions under the EPC mechanism but also for inferior manufacturers seeking cooperation opportunities for technological advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Antolin-Lopez, R., Martinez-del-Rio, J., & Cespedes-Lorente, J. J. (2015). The choice of suitable cooperation partners for product innovation: differences between new ventures and established companies. European Management Journal, 33(6), 472–484.

    Article  Google Scholar 

  • Brockhoff, K. (1992). R&D cooperation between firms-a perceived transaction cost perspective. Management Science, 38(4), 514–524.

    Article  Google Scholar 

  • Chen, C. (2001). Design for the environment: A quality-based model for green product development. Management Science, 47(2), 250–263.

    Article  Google Scholar 

  • Desai, P. S. (2001). Quality segmentation in spatial markets: When does cannibalization affect product line design? Marketing Science, 20(3), 265–283.

    Article  Google Scholar 

  • Du, S. F., Zhu, J. A., Jiao, H. F., & Ye, W. Y. (2015). Game-theoretical analysis for supply chain with consumer preference to low carbon. International Journal of Production Research, 53(12), 3753–3768.

    Article  Google Scholar 

  • Ettlie, J. E., & Pavlou, P. A. (2006). Technology-based new product development partnerships. Decision Sciences, 37(2), 117–147.

    Article  Google Scholar 

  • Fiestras-Janeiro, M. G., Garcia-Jurado, I., & Meca, A. (2015). Cooperative on capacitated inventory situations with fixed holding costs. European Journal of Operational Research, 241(3), 719–726.

    Article  Google Scholar 

  • Friedemann, P., Paschen, V. F., & Colin, N. (2016). What encourage local authorities to engage with energy performance contracting for retrofitting? Evidence from German municipalities. Energy Policy, 94, 317–330.

    Article  Google Scholar 

  • Goldman, C. A., Hopper, N. C., & Osborn, J. G. (2005). Review of US ESCO industry market trends: an empirical analysis of project data. Energy Policy, 33, 387–405.

    Article  Google Scholar 

  • Gong, X., & Zhou, S. X. (2013). Optimal production planning with emissions trading. Operations Research, 61(4), 908–924.

    Article  Google Scholar 

  • Hafezalkotob, A. (2017). Competition, cooperation and coopetition of green supply chains under regulations on energy saving levels. Transportation Research Part E: Logistics and Transportation Review, 97, 228–250.

    Article  Google Scholar 

  • Hannon, M. J., & Bolton, R. (2015). UK local authority engagement with the energy service company (ESCO) model: key characteristics, benefits, limitations and considerations. Energy Policy, 78, 198–212.

    Article  Google Scholar 

  • Hannon, M. J., Foxon, T. J., & Gale, W. F. (2013). The co-evolutionary relationship between energy service companies and the UK energy system: Implications for a low-carbon transition. Energy Policy, 61(10), 1031–1045.

    Article  Google Scholar 

  • Hufen, H., & Bruijn, H. D. (2016). Getting the incentives right. Energy performance contracts as a tool for property management by local government. Journal of Cleaner Production, 112(4), 2717–2729.

    Article  Google Scholar 

  • Iida, T. (2012). Coordination of cooperative cost-reduction efforts in a supply chain partnership. European Journal of Operational Research, 222(2), 180–190.

    Article  Google Scholar 

  • Kamien, M. I., Oren, S. S., & Tauman, Y. (1992). Optimal licensing of cost-reducing innovation. Journal of Mathematical Economics, 21(5), 483–508.

    Article  Google Scholar 

  • Kesavayuth, D., & Zikos, V. (2012). Upstream and downstream horizontal R&D networks. Economic Modeling, 29(3), 742–750.

    Article  Google Scholar 

  • Kim, S., Cohen, M. A., & Netessine, S. (2007). Performance contracting in aftersales service supply chains. Management Science, 53(12), 1843–1858.

    Article  CAS  Google Scholar 

  • Kimms, A., & Kozeletskyi, I. (2016). Core-based cost allocation in the cooperative traveling salesman problem. European Journal of Operational Research, 248(3), 910–916.

    Article  Google Scholar 

  • King, A. (2007). Cooperation between corporations and environmental groups: a transaction cost perspective. Academy of Management Review, 32(3), 889–900.

    Article  Google Scholar 

  • Krass, D., Nedorezov, T., & Ovchinnikov, A. (2013). Environment taxes and the choice of green technology. Production and Operation Management, 22(5), 1035–1055.

    Article  Google Scholar 

  • Leahy, D., & Neary, J. P. (2007). Absorptive capacity, R&D spillovers, and public policy. International Journal of Industrial Organization, 25(5), 1089–1108.

    Article  Google Scholar 

  • Lee, P., Lam, P. T. I., & Lee, W. L. (2018). Performance risks of lighting retrofit in Energy Performance Contracting Projects. Energy for Sustainable Development, 45(7), 219–229.

    Article  Google Scholar 

  • Li, Y. (2012). AHP-fuzzy evaluation on financing bottleneck in energy performance contracting in China. Energy Procedia., 14, 121–126.

    Article  Google Scholar 

  • Li, Y., Qiu, Y., & Wang, Y. D. (2014). Explaining the contract terms of energy performance contracting in China: The importance of effective financing. Energy Economic, 45, 401–411.

    Article  Google Scholar 

  • Liu, H. M., Hu, M. Y., & Zhang, X. Y. (2018). Energy Costs Hosting Model: The most suitable business model in the developing stage of Energy Performance Contracting. Journal of Cleaner Production, 172, 2553–2566.

    Article  Google Scholar 

  • Liu, H. M., Zhang, X. Y., & Hu, M. Y. (2019). Game-theory-based analysis of energy performance contracting for building retrofits. Journal of Cleaner Production, 231, 1089–1099.

    Article  Google Scholar 

  • Liu, P., Zhou, Y., Zhou, D. K., & Xue, L. (2017). Energy performance contract models for the diffusion of green-manufacturing technologies in China: a stakeholder analysis from SMEs’ perspective. Energy Policy, 106, 59–67.

    Article  Google Scholar 

  • Luo, Z., Chen, X., & Wang, X. J. (2016). The role of cooperation in low carbon manufacturing. European Journal of Operational Research, 253, 392–403.

    Article  Google Scholar 

  • Matthew, J., & Hannon, R. B. (2015). UK Local Authority engagement with the Energy Service Company (ESCO) model: Key characteristics, benefits, limitations and considerations. Energy Policy, 78, 198–212.

    Article  Google Scholar 

  • Okay, N., & Akman, U. (2010). Analysis of ESCO activities using country indicators. Renew Sustain Energy Review, 14(9), 2760–2771.

    Article  Google Scholar 

  • Paolo, P., Roberto, F., Alessandro, C., & Massimo, L. (2016). Evaluation of energy conservation opportunities through Energy Performance Contracting: a case study in Italy. Energy and Buildings, 128, 886–899.

    Article  Google Scholar 

  • Pelin, G. B., Anumba, C. J., & Leicht, R. M. (2018). Advanced energy retrofit projects: cross-case analysis of integrated system design. International Journal of Construction Management., 18(6), 453–466.

    Article  Google Scholar 

  • Polzin, F., Flotow, P. V., & Nolden, C. (2016). What encourages local authorities to engage with energy performance contracting for retrofitting? Evidence from German municipalities. Energy Policy, 94, 317–330.

    Article  Google Scholar 

  • Qin, Q. D., Liang, F. D., Li, L., & Wei, Y. M. (2017). Selection of energy performance contracting business models: A behavioral decision-making approach. Renewable and Sustainable Energy Reviews, 72, 422–433.

    Article  Google Scholar 

  • Quinn, J. B. (2000). Outsourcing innovation: the new engine of growth. Sloan Management Review, 41(4), 13–13.

    Google Scholar 

  • Satu, P., & Kirsi, S. (2014). Energy service companies and energy performance contracting: is there a need to renew the business model? Insights from a Delphi study. Journal of Cleaner Production, 66, 264–271.

    Article  Google Scholar 

  • Sen, D. (2005). Fee versus royalty reconsidered. Games and Economic Behavior, 53, 141–147.

    Article  Google Scholar 

  • Sen, D., & Taumen, Y. (2007). General licensing schemes for a cost-reducing innovation. Games and Economic Behavior, 59, 163–186.

    Article  Google Scholar 

  • Shang, T. C., Zhang, K., Liu, P. H., & Chen, Z. W. (2017). A review of energy performance contracting business models: Status and recommendation. Sustainable Cities and Society, 34(6), 203–210.

    Article  Google Scholar 

  • Shang, T. C., Zhang, K., Liu, P. H., Chen, Z. W., Li, X. P., & Wu, X. (2015). What to allocate and how to allocate?-Benefit allocation in Shared Savings Energy Performance Contracting Projects. Energy, 91, 60–71.

    Article  Google Scholar 

  • Shi, T., Gu, W., Chhajed, D., & Petruzzi, N. C. (2016). Effects of remanufacture product design on market segmentation and the environment. Decision Sciences, 47(2), 298–332.

    Article  Google Scholar 

  • Stamatopoulos, G., & Tauman, Y. (2008). Licensing of a quality-improving innovation. Mathematical Social Sciences, 56(3), 410–438.

    Article  Google Scholar 

  • Suzummura, K. (1992). Cooperative and Non cooperative R&D with Spillovers. American Economic Review, 82(5), 1307–1320.

    Google Scholar 

  • Tang, C. S., & Zhou, S. X. (2012). Research advances in environmentally and socially sustainable operations. European Journal of Operational Research, 223(3), 585–594.

    Article  Google Scholar 

  • Vine, E. (2005). An international survey of the energy service company (ESCO) industry. Energy Policy, 33(5), 691–704.

    Article  Google Scholar 

  • Wang, S., & Liu, F. (2016). Cooperative innovation in a supply chain with different market power structures. American Journal of Operations Research, 6(2), 173–198.

    Article  CAS  Google Scholar 

  • Wang, X. H. (2002). Fee versus royalty licensing in a differentiated Cournot duopoly. Journal of Economics and Business, 54, 253–266.

    Article  Google Scholar 

  • Wang, X. H., & Yang, B. (2004). On technology transfer to an asymmetric Cournot duopoly. Economics Bulletin, 14(4), 1–6.

    Google Scholar 

  • Xie, G. (2016). Cooperative strategies for sustainability in a decentralized supply chain with competing suppliers. Journal of Cleaner Production, 113, 807–821.

    Article  Google Scholar 

  • Xu, P. P., & Chan, E. H. W. (2013). ANP model for sustainable Building Energy Efficiency Retrofit (BEER) using Energy Performance Contracting (EPC) for hotel building in China. Habitat International, 37, 104–112.

    Article  Google Scholar 

  • Xu, P. P., Chan, E. H. W., Henk, J. V., Zhang, X. L., & Wu, Z. Z. (2015). Sustainable building energy efficiency retrofit for hotel buildings using EPC mechanism in China: Analytic Network Process (ANP) approach. Journal of Cleaner Production, 107, 378–388.

    Article  Google Scholar 

  • Xu, P. P., Chan, E. H. W., & Qian, Q. K. (2011). Success factors of energy performance contracting (EPC) for sustainable building energy efficiency retrofit (BEER) of hotel buildings in China. Energy Policy, 39, 7389–7398.

    Article  Google Scholar 

  • Zeng, R. C., Chini, A., Srinivasan, R. S., & Jiang, P. (2017). Energy efficiency of smart windows made of photonic crystal. International Journal of Construction Management, 17(2), 100–112.

    Article  Google Scholar 

  • Zhang, W.J., He, L.L., Yuan, H.P., (2021). Enterprises’ decisions on adopting low-carbon technology by considering consumer perception disparity. Technovation, 102238.

  • Zhang, J., & Baden, F. C. (2010). The influence of technological knowledge base and organizational structure on technology collaboration. Journal of Management Studies, 47(4), 679–704.

    Article  Google Scholar 

  • Zhang, W. J., Wang, Z., Yuan, H. P., & Xu, P. P. (2020). Investigating the inferior manufacturer’s cooperation with a third party under the energy performance contracting mechanism. Journal of Cleaner Production, 272, 122530.

    Article  Google Scholar 

  • Zhang, W. J., & Yuan, H. P. (2019a). A bibliometric analysis of energy performance contracting research from 2008 to 2018. Sustainability, 11, 3548.

    Article  Google Scholar 

  • Zhang, W. J., & Yuan, H. P. (2019b). Promoting energy performance contracting for achieving urban sustainability: What is the research trends? Energies, 12, 1443.

    Article  CAS  Google Scholar 

  • Zhang, X. L., Wu, Z. Z., Feng, Y., & Xu, P. P. (2015). ‘Turning green into gold’: a framework for energy performance contracting (EPC) in China’s real estate industry. Journal of Cleaner Production, 109, 166–173.

    Article  Google Scholar 

  • Zhou, W. H., & Huang, W. X. (2016). Contract designs for energy-saving product development in a monopoly. European Journal of Operational Research, 250(3), 902–913.

    Article  Google Scholar 

  • Zhou, W. H., Huang, W. X., & Zhou, S. X. (2017). Energy performance contracting in a competitive environment. Decision Sciences, 48(4), 723–765.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the National Social Science Foundation of China (20BGL187), the Guangdong Philosophy and Social Science Program (GD20SQ06), the Guangzhou Philosophy and Social Science Program in 2019 (2019GZYB86), the Guangxi Philosophy and Social Science Program (21FGL0023), the Guangxi Middle-aged and Young Teacher’s Basic Ability Promotion Program (2021KY0156), the Guangxi Minzu University Introducing Talent Program (2020SKQD13), and the Xiangsi Lake Young Scholars Innovation Team of Guangxi Minzu University (2020RSCXSHQN04). The constructive comments provided by the handling editor and the two reviewers are highly appreciated.

Funding

The study was supported by the National Social Science Foundation of China (20BGL187), the Guangdong Philosophy and Social Science Program (GD20SQ06), the Guangzhou Philosophy and Social Science Program in 2019 (2019GZYB86), the Guangxi Philosophy and Social Science Program (21FGL0023), the Guangxi Middle-aged and Young Teacher’s Basic Ability Promotion Program (2021KY0156), the Guangxi Minzu University Introducing Talent Program (2020SKQD13), and the Xiangsi Lake Young Scholars Innovation Team of Guangxi Minzu University (2020RSCXSHQN04).

Author information

Authors and Affiliations

Authors

Contributions

Wenjie ZHANG, Hongping YUAN contributed to conceptualization; Wenjie ZHANG, Jing LIU contributed to methodology; Wenjie ZHANG, Hongping YUAN, Lingling HE contributed to formal analysis and investigation; Wenjie ZHANG, Jing LIU, Lingling HE contributed to writing—original draft preparation; Lingling HE, Hongping YUAN contributed to writing—review and editing; Hongping YUAN, Wenjie ZHANG contributed to funding acquisition; Hongping YUAN contributed to resources; and Hongping YUAN supervised the study.

Corresponding author

Correspondence to Hongping Yuan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publishcation

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: proofs

Appendix: proofs

Proof of theorem 1

Firstly, calculate derivatives of Eqs. (2) and (3) with respect to \(\mathop q\nolimits_{1}\) and \(\mathop q\nolimits_{2}\) respectively, and let \(\frac{{\partial \mathop \prod \nolimits_{1} }}{{\partial \mathop q\nolimits_{1} }} = 0\), \(\frac{{\partial \mathop \prod \nolimits_{2} }}{{\partial \mathop q\nolimits_{2} }} = 0\).

Then, we can obtain the solutions of Nash equilibrium quantity as \(\left\{ \begin{gathered} q_{1}^{*} = \frac{a + ce - 2c\theta e}{3} \hfill \\ q_{2}^{*} = \frac{a + c\theta e - 2ce}{3} \hfill \\ \end{gathered} \right.\). Secondly, substituting the solutions of the equilibrium quantity into the inverse demand function, and we can obtain the equilibrium price \(p^{*} = \frac{a + ce + c\theta e}{3}\). Lastly, calculate the second derivatives of Eqs. (2) and (3) with respect to \(\mathop q\nolimits_{1}\) and \(\mathop q\nolimits_{2}\) respectively, namely, \(\frac{{\mathop \partial \nolimits^{{\mathop 2\limits_{{}} }} \mathop \prod \nolimits_{1} }}{{\partial \mathop {\mathop q\nolimits_{1} }\nolimits^{2} }} = - 2 < 0\) and \(\frac{{\partial^{2} \mathop \prod \nolimits_{2} }}{{\partial \mathop {\mathop q\nolimits_{2} }\nolimits^{2} }} = - 2 < 0\), which implies that there are the maximum points of \(\mathop \prod \nolimits_{1}\) and \(\mathop \prod \nolimits_{2}\). Then, substituting the solutions of Nash equilibrium quantity and the equilibrium price into the Eq. (1), and we can obtain the equilibrium profits of two manufacturers as \(\left\{ \begin{gathered} \Pi_{1}^{*} = \frac{{(a + ce - 2c\theta e)^{2} }}{9} \hfill \\ \Pi_{2}^{*} = \frac{{(a + c\theta e - 2ce)^{2} }}{9} \hfill \\ \end{gathered} \right.\).

Proof of theorem 2

Similarly, firstly, calculate derivatives of Eqs. (4) and (5) with respect to \(\mathop q\nolimits_{1}\) and \(\mathop q\nolimits_{2}\) respectively, and let \(\frac{{\partial \mathop \prod \nolimits_{1} }}{{\partial \mathop q\nolimits_{1} }} = 0\), \(\frac{{\partial \mathop \prod \nolimits_{2} }}{{\partial \mathop q\nolimits_{2} }} = 0\).

Then, we can obtain the solutions of Nash equilibrium quantity under EPC cooperation as \(\left\{ \begin{gathered} \mathop q\nolimits_{{\mathop 1\limits^{{*{*}}} }} = \frac{a - c\theta e - rc\theta e + rce}{3} \hfill \\ \mathop q\nolimits_{{\mathop 2\limits^{{*{*}}} }} = \frac{a - c\theta e + 2rc\theta e - 2rce}{3} \hfill \\ \end{gathered} \right.\). Secondly, substituting the solutions of the equilibrium quantity into the inverse demand function, and we can obtain the equilibrium price \(p^{{*{*}}} = \frac{{a + {2}c\theta e - rc\theta e + rce}}{3}\). Lastly, calculate the second derivatives of Eqs. (4) and (5) with respect to \(\mathop q\nolimits_{1}\) and \(\mathop q\nolimits_{2}\) respectively, namely, \(\frac{{\mathop \partial \nolimits^{{\mathop 2\limits_{{}} }} \mathop \prod \nolimits_{1} }}{{\partial \mathop {\mathop q\nolimits_{1} }\nolimits^{2} }} = - 2 < 0\) and \(\frac{{\mathop \partial \nolimits^{{\mathop 2\limits_{{}} }} \mathop \prod \nolimits_{2} }}{{\partial \mathop {\mathop q\nolimits_{2} }\nolimits^{2} }} = - 2 < 0\), which implies that there are the maximum points of \(\mathop \prod \nolimits_{1}\) and \(\mathop \prod \nolimits_{2}\). Then, substituting the solutions of Nash equilibrium quantity and the equilibrium price into Eqs. (4) and (5), and we can obtain the equilibrium profits of two manufacturers as \(\left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop 1\limits^{**} }} = \frac{\begin{gathered} ({2}a^{{2}} + 6a\theta - 3a\theta^{2} + 3ce\theta^{3} + 2c^{2} e^{2} \theta^{2} - 10c^{2} e^{2} r^{2} - 6ce\theta^{2} - 10ac\theta er - 10c^{2} e^{2} r^{2} \theta^{2} + 20c^{2} e^{2} r^{2} \theta \hfill \\ + 10c^{2} e^{2} r\theta^{2} - 10c^{2} e^{2} r\theta + 10cear - 4c\theta ea + 18cer\theta^{2} - 6cer\theta^{3} + 3c\theta e + 6cer - 18c\theta er - 3a) \hfill \\ \end{gathered} }{9} \hfill \\ \mathop \prod \nolimits_{{\mathop 2\limits^{**} }} = \frac{{(a - c\theta e + 2rc\theta e - 2rce)^{2} }}{9} \hfill \\ \end{gathered} \right.\).

Proof of proposition 1

Let \(\Delta p = p^{{*{*}}} - p^{*}\), and substitute the solutions of \(p^{{*{*}}}\) and \(p^{*}\) into this function, and then we obtain \(\Delta p = - ce(1 - \theta )({1} - r)/3\).

Because \(c > 0,e > 0,0 < \theta < 1,0 < r \le 1\), we have \(\Delta p < 0\), so \(p^{{*{*}}} < p^{*}\).

Let \(\Delta Q = (q_{1}^{{{*}*}} + q_{2}^{{*{*}}} ) - (q_{1}^{*} + q_{2}^{*} )\), and substitute the solutions of \(q_{1}^{{{*}*}} ,q_{2}^{{*{*}}} ,q_{1}^{*} ,q_{2}^{*}\) into this function, and then we obtain \(\Delta Q = ce(1 - \theta )({1} - r)/3\). Because \(c > 0,e > 0,0 < \theta < 1,0 < r \le 1\), we have \(\Delta Q > 0\), so \((\mathop q\nolimits_{{\mathop 1\limits^{**} }} + \mathop q\nolimits_{{\mathop 2\limits^{**} }} ) > (\mathop q\nolimits_{{\mathop 1\limits^{*} }} + \mathop q\nolimits_{{\mathop 2\limits^{*} }} )\).

Proof of proposition 2

Based on results in Table 3, the total energy consumption for both manufacturers after EPC cooperation are \(\Delta CE^{**} = (q_{1}^{**} + q_{2}^{**} )\theta e = \frac{(2a - 2ce\theta + rce\theta - rce)\theta e}{3}\), and that without EPC cooperation is \(\Delta CE^{*} = (\theta q_{1}^{*} + q_{2}^{*} )e = \frac{{(a\theta + 2ce\theta - 2ce\theta^{2} + a - 2ce)e}}{3}\).

As a result, the changes of total energy consumption after EPC cooperation are \(\Delta CE^{**} - \Delta CE^{*} = \frac{{e(a\theta + rce\theta^{2} - rce\theta - 2ce\theta - a + 2ce)}}{3}\). When \(r < \frac{2ce - a}{{ce\theta }}\), \(\Delta CE^{**} - \Delta CE^{*} > 0\) and total energy consumption increases after EPC cooperation; when \(r > \frac{2ce - a}{{ce\theta }}\), that reversely decreases.

Proof of proposition 3 and Proof of proposition 4

Let \(\Delta \mathop \prod \nolimits_{1} = \mathop \prod \nolimits_{{\mathop 1\limits^{**} }} - \mathop \prod \nolimits_{{\mathop 1\limits^{*} }}\), and substitute the equilibrium solutions in Table 1 into this equation, and we can obtain:

\(\Delta \mathop \prod \nolimits_{1} = \frac{{1}}{18}(1 - \theta )(10c^{2} e^{2} r^{2} \theta - 10c^{2} e^{2} r^{2} - 10c^{2} e^{2} r\theta + 6c^{2} e^{2} \theta + 6cer\theta^{2} + 10acer - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} - 4ace + 6cer + ce\theta + 3a\theta - 3a)\) Because \(c > 0,e > 0,0 < \theta < 1,0 < r \le 1\), we have \(\frac{{1}}{{{18}}}(1 - \theta ) > 0\),the sign of \(\Delta \mathop \prod \nolimits_{1}\) depends on \(a,r\):

  1. (i)

    when \(r \ge 0.4\),we have:\(\left\{ \begin{gathered} \Delta \mathop \prod \nolimits_{1} \ge 0,\forall :a \ge \frac{{(10r^{2} c^{2} e^{2} \theta - 10r^{2} c^{2} e^{2} - 10rc^{2} e^{2} \theta + 6c^{2} e^{2} \theta + 6rce\theta^{2} - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} + 6cer + 3ce\theta )}}{(4ce - 10rce + 3 - 3\theta )} \hfill \\ \Delta \mathop \prod \nolimits_{1} < 0,\forall :a < \frac{{(10r^{2} c^{2} e^{2} \theta - 10r^{2} c^{2} e^{2} - 10rc^{2} e^{2} \theta + 6c^{2} e^{2} \theta + 6rce\theta^{2} - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} + 6cer + 3ce\theta )}}{(4ce - 10rce + 3 - 3\theta )} \hfill \\ \end{gathered} \right.\)

  2. (ii)

    (ii)when \(r < 0.4\),we have:

    \(\left\{ \begin{gathered} \Delta \mathop \prod \nolimits_{1} \ge 0,\forall :a \le \frac{{(10r^{2} c^{2} e^{2} \theta - 10r^{2} c^{2} e^{2} - 10rc^{2} e^{2} \theta + 6c^{2} e^{2} \theta + 6rce\theta^{2} - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} + 6cer + 3ce\theta )}}{(4ce - 10rce + 3 - 3\theta )} \hfill \\ \Delta \mathop \prod \nolimits_{1} < 0,\forall :a > \frac{{(10r^{2} c^{2} e^{2} \theta - 10r^{2} c^{2} e^{2} - 10rc^{2} e^{2} \theta + 6c^{2} e^{2} \theta + 6rce\theta^{2} - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} + 6cer + 3ce\theta )}}{(4ce - 10rce + 3 - 3\theta )} \hfill \\ \end{gathered} \right.\) Correspondingly, we have:

\(\left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop 1\limits^{{*{*}}} }} \ge \mathop \prod \nolimits_{{\mathop 1\limits^{*} }} ,\forall :a \ge \frac{{(10r^{2} c^{2} e^{2} \theta - 10r^{2} c^{2} e^{2} - 10rc^{2} e^{2} \theta + 6c^{2} e^{2} \theta + 6rce\theta^{2} - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} + 6cer + 3ce\theta )}}{(4ce - 10rce + 3 - 3\theta )},0.4 \le r \le 1 \hfill \\ \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \cup \forall :a \le \frac{{(10r^{2} c^{2} e^{2} \theta - 10r^{2} c^{2} e^{2} - 10rc^{2} e^{2} \theta + 6c^{2} e^{2} \theta + 6rce\theta^{2} - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} + 6cer + 3ce\theta )}}{(4ce - 10rce + 3 - 3\theta )},0 < r < 0.4 \hfill \\ \mathop \prod \nolimits_{{\mathop 1\limits^{{*{*}}} }} < \mathop \prod \nolimits_{{\mathop 1\limits^{*} }} ,\forall :a < \frac{{(10r^{2} c^{2} e^{2} \theta - 10r^{2} c^{2} e^{2} - 10rc^{2} e^{2} \theta + 6c^{2} e^{2} \theta + 6rce\theta^{2} - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} + 6cer + 3ce\theta )}}{(4ce - 10rce + 3 - 3\theta )},0.4 \le r \le 1 \hfill \\ \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \mathop {}\limits^{{}} \cup \forall :a > \frac{{(10r^{2} c^{2} e^{2} \theta - 10r^{2} c^{2} e^{2} - 10rc^{2} e^{2} \theta + 6c^{2} e^{2} \theta + 6rce\theta^{2} - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} + 6cer + 3ce\theta )}}{(4ce - 10rce + 3 - 3\theta )},0 < r < 0.4 \hfill \\ \end{gathered} \right.\) Let \(\Delta \mathop \prod \nolimits_{{2}} = \mathop \prod \nolimits_{{\mathop {2}\limits^{**} }} - \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }}\), and substitute the equilibrium solutions in Tab.1 into this equation, and we can obtain:\(\Delta \mathop \prod \nolimits_{{2}} = \frac{{4}}{{9}}(1 - \theta )(1 - r)ce(cer\theta - cer - ce + a)\). Because \(c > 0,e > 0,0 < \theta < 1,0 < r \le 1\), we have \(\frac{{4}}{{9}}(1 - \theta )(1 - r)ce > 0\),the sign of \(\Delta \mathop \prod \nolimits_{{2}}\) depends on \(a\):\(\left\{ \begin{gathered} \Delta \mathop \prod \nolimits_{{2}} \ge 0,\forall :a \ge ce + cer - c\theta er \hfill \\ \Delta \mathop \prod \nolimits_{{2}} < 0,\forall :a < ce + cer - c\theta er \hfill \\ \end{gathered} \right.\).

Correspondingly, we have: \(\left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop {2}\limits^{{{*}*}} }} \ge \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} ,\forall :a \ge ce + cer - c\theta er \hfill \\ \mathop \prod \nolimits_{{\mathop {2}\limits^{{*{*}}} }} < \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} ,\forall :a < ce + cer - c\theta er \hfill \\ \end{gathered} \right.\).

We assume that the lower limit of the market is \(\underline{a} > (2 - \theta )ce\).Thus, let \(a_{{1}} = \frac{{(10r^{2} c^{2} e^{2} \theta - 10r^{2} c^{2} e^{2} - 10rc^{2} e^{2} \theta + 6c^{2} e^{2} \theta + 6rce\theta^{2} - 2c^{2} e^{2} - 12cer\theta - 3ce\theta^{2} + 6cer + 3ce\theta )}}{(4ce - 10rce + 3 - 3\theta )}\);\(a_{{2}} = ce + cer - c\theta er\); \(\underline{a} = (2 - \theta )ce\).

Let \(\Delta {1} = \underline{a} - a_{{1}}\), we have \(\Delta {1} = \frac{2ce(1 - r)(1 - \theta )(5rce - 5ce + 3\theta - 3)}{{(4ce - 10rce + 3 - 3\theta )}}\). Since \(c > 0,e > 0,0 < \theta < 1,0 < r \le 1\), the sign of \(\Delta {1}\) depends on \(c\) and \(r\):

(i)when \(r \ge 0.4\):

(a) when \(c \le {3}(1 - \theta )/e({10}r - 4)\), we have \(\Delta {1} \ge 0\), so \(\underline{a} \ge a_{{1}}\);

(b) when \(c > {3}(1 - \theta )/e({10}r - 4)\), we have \(\Delta {1} < 0\), so \(\underline{a} < a_{{1}}\);

(ii) when \(r < 0.4\):

we have \(c > {3}(1 - \theta )/e({10}r - 4)\). Because \({3}(1 - \theta )/e({10}r - 4) < 0,c > 0\), we have \(\Delta {1} \ge 0\), so \(\underline{a} \ge a_{{1}}\);

Let \(\Delta {2} = \underline{a} - a_{{2}}\), we have \(\Delta {2} = ({1} - r)(1 - \theta )ce > 0\), so \(\underline{a} \ge a_{{2}}\);

Let \(\Delta {3} = a_{{2}} - a_{{1}}\), we have \(\Delta {3} = 3ce(1 - \theta )({1} - r)(2ce - \theta + 1)/(4ce - 10rce + 3 - 3\theta )\), the sign of \(\Delta {3}\) depends on \(c\) and \(r\):

(i)when \(r \ge 0.4\):

(a) when \(c \le {3}(1 - \theta )/e({10}r - 4)\), \(\Delta {3} \ge 0\), so \(a_{{2}} \ge a_{{1}}\);

(b) when \(c > {3}(1 - \theta )/e({10}r - 4)\), \(\Delta {3} < 0\), so \(a_{{2}} < a_{{1}}\);

(ii) when \(r < 0.4\):

we have \(c > {3}(1 - \theta )/e({10}r - 4)\), Because \({3}(1 - \theta )/e({10}r - 4) < 0,c > 0\), we have \(\Delta {3} \ge 0\), so \(a_{{2}} \ge a_{{1}}\);

Let \(c_{1} = {3}(1 - \theta )/e({10}r - 4)\), and the relationship of \(a_{{1}} ,a_{{2}} ,\underline{a}\) depends on \(c\), that is \(\left\{ \begin{gathered} a_{{1}} \le a_{{2}} \le \underline{a} ,\forall :0 < c \le c_{1} \hfill \\ a_{{2}} \le \underline{a} < a_{{1}} ,\forall :c > c_{{1}} \hfill \\ \end{gathered} \right.\).

In summary, the relationship between market size and energy prices is shown as follows:

figure a

According to the above figure, the comparative results of the two manufacturers’ profits with or without EPC cooperation can be divided into two situations:

(i) when \(0 < c \le c_{1}\),\(a_{{1}} \le a_{{2}} \le \underline{a}\), the comparative results of the two manufacturers’ profits are shown as follows:

figure b

Because \(a > \underline{a}\), we can obtain \(\left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop 1\limits^{{{*}*}} }} \ge \mathop \prod \nolimits_{{\mathop 1\limits^{*} }} \hfill \\ \mathop \prod \nolimits_{{\mathop {2}\limits^{**} }} \ge \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} \hfill \\ \end{gathered} \right.,\forall :0 < c \le c_{1} ,0 < r \le 1\).

(ii) when \(c > c_{{1}}\), \(a_{{2}} \le \underline{a} < a_{{1}}\):

(a) when \(0.4 < r \le 1\), the comparative results of the two manufacturers’ profits are shown as follows:

figure c

Because \(a > \underline{a}\), we can obtain \(\left\{ \begin{gathered} \left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop 1\limits^{{*{*}}} }} < \mathop \prod \nolimits_{{\mathop 1\limits^{*} }} \hfill \\ \mathop \prod \nolimits_{{\mathop {2}\limits^{{*{*}}} }} \ge \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} \hfill \\ \end{gathered} \right.,\forall :\underline{a} < a \le a_{1} ,c > c_{{1}} ,0.4 \le r \le 1 \hfill \\ \left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop 1\limits^{{{*}*}} }} \ge \mathop \prod \nolimits_{{\mathop 1\limits^{*} }} \hfill \\ \mathop \prod \nolimits_{{\mathop {2}\limits^{{*{*}}} }} \ge \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} \hfill \\ \end{gathered} \right.,\forall :a > a_{{1}} ,c > c_{{1}} ,0.4 \le r \le 1 \hfill \\ \end{gathered} \right.\).

(b) when \({0} < r < {0}{\text{.4}}\), the comparative results of the two manufacturers’ profits are shown as follows:

figure d

Because \(a > \underline{a}\), we can obtain \(\left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop 1\limits^{**} }} < \mathop \prod \nolimits_{{\mathop 1\limits^{*} }} \hfill \\ \mathop \prod \nolimits_{{\mathop {2}\limits^{**} }} \ge \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} \hfill \\ \end{gathered} \right.,\forall :c > c_{{1}} ,{0} < r < {0}{\text{.4}}\).

In summary, the comparative results of the two manufacturers’ profits are shown as follows:

figure e

Because \(\Delta \mathop \prod \nolimits_{{2}} = \frac{{4}}{{9}}(1 - \theta )(1 - r)ce(cer\theta - cer - ce + a)\), and \(\frac{{4}}{{9}}(1 - \theta )(1 - r)ce > 0\), so the sign of \(\Delta \mathop \prod \nolimits_{{2}}\) depends on \((cer\theta - cer - ce + a)\). Let \((cer\theta - cer - ce + a){ = 0}\), we have \(r_{1} = \frac{a - ce}{{(1 - \theta )ce}}\). Then, the sign of \(\Delta \mathop \prod \nolimits_{{2}}\) depends on \(a\) and \(r\):\(\left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop {2}\limits^{{*{*}}} }} \ge \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} ,\forall :r < r_{1} \hfill \\ \mathop \prod \nolimits_{{\mathop {2}\limits^{{*{*}}} }} < \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} ,\forall :r > r_{1} \hfill \\ \end{gathered} \right.\).

when \((\theta - 2r\theta + 2r)ce < a < (2 - \theta )ce\), we have:

(i) if \(\frac{1}{2} < r < 1\), we have \(\mathop r\nolimits_{{1}} > \frac{1}{2}\), and \(\left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop {2}\limits^{{*{*}}} }} \ge \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} ,\forall :\frac{1}{2} < r \le r_{1} \hfill \\ \mathop \prod \nolimits_{{\mathop {2}\limits^{{{*}*}} }} < \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} ,\forall :r_{1} < r < 1 \hfill \\ \end{gathered} \right.\);

(ii) if \(0 < r \le \frac{1}{2}\), we have \(\mathop r\nolimits_{{1}} < 0\), and \(\mathop \prod \nolimits_{{\mathop {2}\limits^{**} }} < \mathop \prod \nolimits_{{\mathop {2}\limits^{*} }} ,\forall :0 < r \le \frac{1}{2}\).

Proof of proposition 5

Calculate derivative of Eq. (6) with respect to \(\mathop q\nolimits_{1}\) and \(\theta\) respectively, and let \(\frac{{\partial \mathop \prod \nolimits_{1} }}{{\partial \mathop q\nolimits_{1} }} = 0\), \(\frac{{\partial \mathop \prod \nolimits_{1} }}{\partial \theta } = 0\).

Solving this simultaneous equation, we can obtain \(\left\{ \begin{gathered} \mathop q\nolimits_{{\mathop 1\limits^{{**{*}}} }} = \frac{{a - c\theta e - \mathop q\nolimits_{2} }}{2} \hfill \\ \mathop \delta \nolimits^{{*{*}*}} = 1 - rce \hfill \\ \end{gathered} \right.\). Because \(\frac{{\mathop \partial \nolimits^{2} \mathop \prod \nolimits_{1} }}{{\partial \mathop {\mathop q\nolimits_{1} }\nolimits^{2} }} = - 2\), \(\frac{{\mathop \partial \nolimits^{2} \mathop \prod \nolimits_{1} }}{{\partial \mathop \theta \nolimits^{2} }} = - q_{2}\) and \(\frac{{\mathop \partial \nolimits^{2} \mathop \prod \nolimits_{1} }}{{\partial \mathop q\nolimits_{1} \partial \theta }} = \frac{{\mathop \partial \nolimits^{2} \mathop \prod \nolimits_{1} }}{{\partial \theta \partial \mathop q\nolimits_{1} }} = 0\), the corresponding Hessian Matrix is \(H = \left[ {\begin{array}{*{20}c} { - 2} & 0 \\ 0 & { - q_{2} } \\ \end{array} } \right]\). Solving this Hessian Matrix, we can obtain the first-order principal minor \(- 2 < 0\), and the second-order principal minor \(2q_{2} > 0\). Thus, we have \(H < 0\), and the function \(\mathop \prod \nolimits_{1}\) has the maximum value at \((\mathop q\nolimits_{{\mathop 1\limits^{{{**}*}} }} ,\mathop \delta \nolimits_{{\mathop {}\limits^{{{**}*}} }} )\).

Proof of proposition 6

Calculate derivative of Eq. (7) with respect to \(\mathop q\nolimits_{2}\), and let \(\frac{{\partial \mathop \prod \nolimits_{2} }}{{\partial \mathop q\nolimits_{2} }} = 0\).

And then we can get \(\mathop q\nolimits_{{\mathop 2\limits^{***} }} = \frac{{a + (\delta r - \delta - r)ce - \mathop q\nolimits_{1} }}{2}\). Since \(\frac{{\mathop \partial \nolimits^{2} \mathop \prod \nolimits_{2} }}{{\partial \mathop {\mathop q\nolimits_{2} }\nolimits^{2} }} = - 2 < 0\), \(\mathop \prod \nolimits_{2}\) has the maximum value at \(\mathop q\nolimits_{{\mathop 2\limits^{***} }}\). Solving the first derivation of Eqs. (6) and (7) simultaneously, we can obtain the optimal solutions as \(\left\{ \begin{gathered} \mathop q\nolimits_{{\mathop 1\limits^{***} }} = \frac{{a - 2c\theta e + c^{2} e^{2} r^{2} - c^{2} e^{2} r + ce}}{3} \hfill \\ \mathop q\nolimits_{{\mathop 2\limits^{***} }} = \frac{{a + c\theta e - 2c^{2} e^{2} r^{2} + 2c^{2} e^{2} r - 2ce}}{3} \hfill \\ \delta^{***} = 1 - rce \hfill \\ \end{gathered} \right.\). Then, substituting those optimal solutions into the inverse demand function, we can obtain the optimal price \(\mathop p\nolimits_{{\mathop {}\limits^{***} }} = \frac{{a + c\theta e + c^{2} e^{2} r^{2} - c^{2} e^{2} r + ce}}{3}\). Substituting those optimal solutions into the Eqs. (6) and (7), we can obtain the optimal profits of two manufacturers as \(\left\{ \begin{gathered} \mathop \prod \nolimits_{{\mathop 1\limits^{***} }} = \frac{\begin{gathered} (2a^{2} + 2c^{2} e^{2} + 4ace + 8c^{2} e^{2} \theta^{2} - 4c^{3} e^{3} r - 4c^{4} e^{4} r^{4} - 2c^{3} e^{3} r^{2} + 2c^{4} e^{4} r^{3} \hfill \\ + 2c^{4} e^{4} r^{2} - 5c^{3} e^{3} r^{2} \theta + 8c^{3} e^{3} r\theta + 7ac^{2} e^{2} r^{2} - 4ac^{2} e^{2} r - 8ac\theta e - 8c^{2} e^{2} \theta ) \hfill \\ \end{gathered} }{18} \hfill \\ \mathop \prod \nolimits_{{\mathop 2\limits^{***} }} = \frac{{(a + c\theta e - 2c^{2} e^{2} r^{2} + 2c^{2} e^{2} r - 2ce)^{2} }}{9} \hfill \\ \end{gathered} \right.\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., He, L., Liu, J. et al. Investigating cooperation between competitive manufacturers under the energy performance contracting mechanism. Environ Dev Sustain 25, 14033–14061 (2023). https://doi.org/10.1007/s10668-022-02643-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02643-6

Keywords

Navigation