Skip to main content

Advertisement

Log in

Assessing the synergic effect of land use and climate change on the upper Betwa River catchment in Central India under present, past, and future climate scenarios

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

We use Soil and Water Assessment Tool (SWAT) to simulate the combined effects of land use/land cover (LU/LC) and climate change on the hydrological response of the Upper Betwa River Catchment (UBRC), a semi-arid region in Central India. We execute this model for two different time periods, 1982–2000 and 2001–2018, using the LU/LC data of 1990 and 2018, respectively. We classified the Landsat satellite images of 1990 and 2018 to obtain the dominant LU/LC classes (water body, built-up, forest, agriculture, and open land) in the catchment. The water body, built-up areas, and cropland have increased by 63%, 65%, and 3%, respectively, whereas forest cover and open land decreased by 16% and 23% in the UBRC from 1990 to 2018. The observed climate data in UBRC shows an increase in the average temperature and decrease in the total rainfall during the period between 1980 to 2018. Once the model is set up, we perform the calibration and validation by using the SWAT Calibration Uncertainty Program (SWAT-CUP). We considered two time periods (1991–1994 and 2001–2007) for the calibration and (1995–1998 and 2008–2014) for the validation. For both these time periods, the calibration and validation result of our model is satisfactory. The output of our calibrated model shows a relative decrease in rainfall (12%), surface runoff (21%), and percolation (9%) in the catchment during the period between 2001–2018 as compared to 1982–2000. Finally, we simulate the surface runoff and percolation in the UBRC using the future climate change scenario. We used the bias-corrected multi-model ensemble of CMIP6 GCMs for four different climate scenarios (2023–2100) by assuming no change in the existing LU/LC. We do this for two different time slices: one from 2023–2060 and the other from 2061–2100. For all the climate scenarios, rainfall and surface runoff in the catchment are expected to decrease by 15–40% and 50–79% as compared to the baseline period of 1982–2018. Percolation in the catchment will have a mixed response. It is expected to decrease by 18% in the middle part of the catchment and increase about 25% in the remaining parts of the catchment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aadhar, S., & Mishra, V. (2020). On the projected decline in droughts over south asia in cmip6 multimodel ensemble. Journal of Geophysical Research: Atmospheres, 125(20), 1–18.

    Google Scholar 

  • Abbas, S., & Dastgeer, G. (2021). Analysing the impacts of climate variability on the yield of kharif rice over Punjab, Pakistan. In: Natural Resources Forum, Wiley Online Library, pp 1–21.

  • Abbas, S., & Kousar, S. (2021). Spatial analysis of drought severity and magnitude using the standardized precipitation index and streamflow drought index over the upper indus basin, Pakistan. Environment, Development and Sustainability, 23, 1–27.

    Article  Google Scholar 

  • Abbas, S., Shirazi, S. A., Hussain, M. S., Yaseen, M., Shakarullah, K., Wahla, S. S., & Khurshid, M. (2020). Impact of climate change on forest cover: Implications for carbon stock assessment and sustainable development in hkh region-Pakistan., 21(1), 66–81.

  • Abbas, S., Kousar, S., & Pervaiz, A. (2021). Effects of energy consumption and ecological footprint on co 2 emissions: An empirical evidence from Pakistan. Environment, Development and Sustainability, 23, 1–18.

    Article  Google Scholar 

  • Abbas, S., Kousar, S., Shirazi, S. A., Yaseen, M., & Latif, Y. (2021b). Illuminating empirical evidence of climate change: Impacts on rice production in the punjab regions, Pakistan. Agricultural Research, 1–16.

  • Ahn, K. H., & Merwade, V. (2014). Quantifying the relative impact of climate and human activities on streamflow. Journal of Hydrology, 515, 257–266.

    Article  Google Scholar 

  • Anand, J., Gosain, A. K., & Khosa, R. (2018). Prediction of land use changes based on land change modeler and attribution of changes in the water balance of ganga basin to land use change using the swat model. Science of the Total Environment, 644, 503–519.

    Article  CAS  Google Scholar 

  • Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R., Van Griensven, A., Van Liew, M. W., et al. (2012). Swat: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491–1508.

    Article  Google Scholar 

  • Asoka, A., Gleeson, T., Wada, Y., & Mishra, V. (2017). Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geoscience, 10(2), 109–117.

    Article  CAS  Google Scholar 

  • Babar, S., & Ramesh, H. (2015). Streamflow response to land use-land cover change over the nethravathi river basin, India. Journal of Hydrologic Engineering, 20(10), 1–11.

    Article  Google Scholar 

  • Chanapathi, T., & Thatikonda, S. (2020). Investigating the impact of climate and land-use land cover changes on hydrological predictions over the krishna river basin under present and future scenarios. Science of The Total Environment, 721, 1–19.

    Article  Google Scholar 

  • Chawla, I., & Mujumdar, P. (2015). Isolating the impacts of land use and climate change on streamflow. Hydrology and Earth System Sciences, 19(8), 3633–3651.

    Article  Google Scholar 

  • Desai, S., Singh, D., Islam, A., & Sarangi, A. (2020). Impact of climate change on the hydrology of a semi-arid river basin of India under hypothetical and projected climate change scenarios. Journal of Water and Climate Change, 12, 969–996.

    Article  Google Scholar 

  • Devi, R. M., Patasaraiya, M. K., Sinha, B., Bisaria, J., & Dimri, A. (2020). Analyzing precipitation and temperature trends of Kanha and Satpura tiger reserve, central India. Theoretical and Applied Climatology, 140, 1–16.

    Article  Google Scholar 

  • Dibaba, W. T., Demissie, T. A., & Miegel, K. (2020). Watershed hydrological response to combined land use/land cover and climate change in highland ethiopia: Finchaa catchment. Water, 12(6), 1801.

    Article  Google Scholar 

  • Dubey, S. K., Sharma, D., Babel, M. S., & Mundetia, N. (2020). Application of hydrological model for assessment of water security using multi-model ensemble of cordex-South Asia experiments in a semi-arid river basin of India. Ecological Engineering, 143, 1–14.

    Article  Google Scholar 

  • Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. (2016). Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design and organization. Geoscientific Model Development, 9(5), 1937–1958.

    Article  Google Scholar 

  • Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., Collins, W. D., Gier, B. K., Hall, A. D., Hoffman, F. M., et al. (2019). Taking climate model evaluation to the next level. Nature Climate Change, 9(2), 102–110.

    Article  Google Scholar 

  • Gosain, A., Rao, S., & Basuray, D. (2006). Climate change impact assessment on hydrology of indian river basins. Current science (pp. 346–353)

  • Gupta, V., Singh, V., & Jain, M. K. (2020). Assessment of precipitation extremes in India during the 21st century under ssp1–1.9 mitigation scenarios of cmip6 gcms. Journal of Hydrology, 590, 1–16.

    Article  Google Scholar 

  • Hayes, M. J., Svoboda, M. D., Wiihite, D. A., & Vanyarkho, O. V. (1999). Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American meteorological society, 80(3), 429–438.

    Article  Google Scholar 

  • Hengade, N., & Eldho, T. (2016). Assessment of lulc and climate change on the hydrology of ashti catchment, India using vic model. Journal of Earth System Science, 125(8), 1623–1634.

    Article  Google Scholar 

  • Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., & Ran, J. (2016). Global semi-arid climate change over last 60 years. Climate Dynamics, 46(3–4), 1131–1150.

    Article  Google Scholar 

  • Kumar, A., Sarthi, P. P., Kumari, A., & Sinha, A. K. (2021). Observed characteristics of rainfall indices and outgoing longwave radiation over the Gangetic plain of India. Pure and Applied Geophysics, 178, 1–13.

    Article  Google Scholar 

  • Kundu, S., Khare, D., & Mondal, A. (2017a). Individual and combined impacts of future climate and land use changes on the water balance. Ecological Engineering, 105, 42–57.

    Article  Google Scholar 

  • Kundu, S., Khare, D., & Mondal, A. (2017b). Past, present and future land use changes and their impact on water balance. Journal of environmental management, 197, 582–596.

    Article  Google Scholar 

  • Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., & Wehner, M. (2020). Changes in annual extremes of daily temperature and precipitation in cmip6 models. Journal of Climate, 34, 1–61.

    Google Scholar 

  • Liu, C., & Xia, J. (2004). Water problems and hydrological research in the yellow river and the Huai and Hai river basins of China. Hydrological Processes, 18(12), 2197–2210.

    Article  Google Scholar 

  • Luo, M., Liu, T., Meng, F., Duan, Y., Frankl, A., Bao, A., & De Maeyer, P. (2018). Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: A case study from the Kaidu river basin in Western China. Water, 10(8), 1046.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the econometric society (pp. 245–259)

  • Mendoza, P. A., Clark, M. P., Mizukami, N., Newman, A. J., Barlage, M., Gutmann, E. D., Rasmussen, R. M., Rajagopalan, B., Brekke, L. D., & Arnold, J. R. (2015). Effects of hydrologic model choice and calibration on the portrayal of climate change impacts. Journal of Hydrometeorology, 16(2), 762–780.

    Article  Google Scholar 

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885–900.

    Article  Google Scholar 

  • Naik, N., Beg, Z., Kumar, A., & Gaurav, K. (2021). Groundwater dynamics in the betwa river catchment in central india. In: EGU General Assembly Conference Abstracts, pp EGU21–15373

  • Narsimlu, B., Gosain, A. K., & Chahar, B. R. (2013). Assessment of future climate change impacts on water resources of upper Sind river basin, India using swat model. Water resources management, 27(10), 3647–3662.

    Article  Google Scholar 

  • O’Neill, B. C., Tebaldi, C., Vuuren, D. P. V., Eyring, V., Friedlingstein, P., Hurtt, G., et al. (2016). The scenario model intercomparison project (scenariomip) for cmip6. Geoscientific Model Development, 9(9), 3461–3482.

    Article  Google Scholar 

  • O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., et al. (2014). A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), 387–400.

    Article  Google Scholar 

  • Palmate, S. S. (2017). Modelling spatiotemporal land dynamics for a trans-boundary river basin using integrated cellular automata and markov chain approach. Applied geography, 82, 11–23.

    Article  Google Scholar 

  • Paul, S., Ghosh, S., Oglesby, R., Pathak, A., Chandrasekharan, A., & Ramsankaran, R. (2016). Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Scientific reports, 6(1), 1–10.

    Article  Google Scholar 

  • Rao, K. K., Patwardhan, S., Kulkarni, A., Kamala, K., Sabade, S., & Kumar, K. K. (2014). Projected changes in mean and extreme precipitation indices over India using precis. Global and Planetary Change, 113, 77–90.

    Article  Google Scholar 

  • Reichle, R. H., & Koster, R. D. (2004). Bias reduction in short records of satellite soil moisture. Geophysical Research Letters, 31(19)

  • Roxy, M. K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde, R., et al. (2017). A threefold rise in widespread extreme rain events over central India. Nature Communications, 8(1), 1–11.

    Article  CAS  Google Scholar 

  • Saharwardi, M. S., Mahadeo, A. S., & Kumar, P. (2021). Understanding drought dynamics and variability over bundelkhand region. Journal of Earth System Science, 130(3), 1–16.

    Article  Google Scholar 

  • Schwinning, S., Sala, O. E., Loik, M. E., & Ehleringer, J. R. (2004). Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia, 141, 191–193.

    Article  Google Scholar 

  • Shah, R., & Srivastava, R. (2019). Effect of climate change on cloud properties over Arabian sea and Central India. Pure and Applied Geophysics, 176(6), 2729–2738.

    Article  Google Scholar 

  • Sharmila, S., Joseph, S., Sahai, A., Abhilash, S., & Chattopadhyay, R. (2015). Future projection of Indian summer monsoon variability under climate change scenario: An assessment from cmip5 climate models. Global and Planetary Change, 124, 62–78.

    Article  Google Scholar 

  • Singh, A., Gaurav, K., Meena, G. K., & Kumar, S. (2020). Estimation of soil moisture applying modified dubois model to sentinel-1; A regional study from central India. Remote Sensing, 12(14), 2266.

    Article  Google Scholar 

  • Sinha, R. K., Eldho, T., & Subimal, G. (2020). Assessing the impacts of land use/land cover and climate change on surface runoff of a humid tropical river basin in Western Ghats, India. International Journal of River Basin Management, 1–12.

  • Swain, S. S., Mishra, A., Sahoo, B., & Chatterjee, C. (2020). Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. Journal of Hydrology, 590, 125260.

    Article  Google Scholar 

  • Tanksali, A., & Soraganvi, V. S. (2021). Assessment of impacts of land use/land cover changes upstream of a dam in a semi-arid watershed using qswat. Modeling Earth Systems and Environment, 7(4), 2391–2406.

    Article  Google Scholar 

  • Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192.

    Article  Google Scholar 

  • Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of hydrology, 456, 12–29.

    Article  Google Scholar 

  • Tsarouchi, G., & Buytaert, W. (2018). Land-use change may exacerbate climate change impacts on water resources in the Ganges basin. Hydrology and Earth System Sciences, 22(2), 1411–1435.

    Article  Google Scholar 

  • Vu, M., Raghavan, S. V., & Liong, S. Y. (2012). Swat use of gridded observations for simulating runoff-a vietnam river basin study. Hydrology and Earth System Sciences, 16(8), 2801–2811.

    Article  Google Scholar 

  • Wagner, P. D., Bhallamudi, S. M., Narasimhan, B., Kantakumar, L. N., Sudheer, K., Kumar, S., et al. (2016). Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Science of the Total Environment, 539, 153–164.

    Article  CAS  Google Scholar 

  • Wang, G., Zhang, Y., Liu, G., & Chen, L. (2006). Impact of land-use change on hydrological processes in the Maying river basin, China. Science in China Series D: Earth Sciences, 49(10), 1098–1110.

    Article  Google Scholar 

  • Wang, M., Zhang, D. Q., Su, J., Dong, J. W., & Tan, S. K. (2018). Assessing hydrological effects and performance of low impact development practices based on future scenarios modeling. Journal of Cleaner Production, 179, 12–23.

    Article  Google Scholar 

  • Yaseen, M., Waseem, M., Latif, Y., Azam, M. I., Ahmad, I., Abbas, S., et al. (2020). Statistical downscaling and hydrological modeling-based runoff simulation in trans-boundary Mangla watershed Pakistan. Water, 12(11), 1–21.

    Article  Google Scholar 

  • Zhang, B., Shrestha, N. K., Daggupati, P., Rudra, R., Shukla, R., Kaur, B., & Hou, J. (2018). Quantifying the impacts of climate change on streamflow dynamics of two major rivers of the Northern lake Erie basin in Canada. Sustainability, 10(8), 2897.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge IISER Bhopal for providing institutional support. Amit Kumar Ph.D. is supported by IISER Bhopal.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This chapter does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Singh, A. & Gaurav, K. Assessing the synergic effect of land use and climate change on the upper Betwa River catchment in Central India under present, past, and future climate scenarios. Environ Dev Sustain 25, 5163–5184 (2023). https://doi.org/10.1007/s10668-022-02260-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-022-02260-3

Keywords

Navigation