Skip to main content

Advertisement

Log in

LVRT capability enhancement in the grid-connected DFIG-driven WECS using adaptive hysteresis current controller

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

With high access of wind energy conversion system (WECS) into the grid, it is essential that the wind energy producing companies have to conform the grid code standards laid down by the country. The low voltage-ride through (LVRT) capability is one among the obligations of all grid code standards. The LVRT capability can be enhanced by controlling the power electronic converters without any additional cost. This work proposes a novel adaptive hysteresis controller (AHC) for the LVRT capability enhancement of grid connected double-feed induction generator (DFIG)-driven WEC system. The active and reactive power flow at the DFIG is managed by modified PQ controller, and the results are compared with PQ controller. The DC link voltage (Vdc) under normal and fault conditions is controlled by fuzzy logic control (FLC). The proposed AHC controller is tested with 9 MW grid connected WEC system on Matlab/Simulink platform, and a detailed simulation was carried out under normal and fault conditions. The test results disclose the efficiency of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  • Abbey, C., & Joos, G. (2007). Supercapacitor energy storage for wind energy applications. IEEE Transactions on Industry Applications, 43, 769–776.

    Article  Google Scholar 

  • Alharbi, Y. M., Yunus, A. M. S., Siada, A. A. (2012) Application of UPFC to improve the LVRT capability of wind turbine generator, 2012 22nd Australasian Universities Power Engineering Conference (AUPEC), Bali, Indonesia, pp. 1–4, 2012.

  • Arnaltes, S., Rodriguez-Amenedo, J. L., & Montilla-DJesus, M. E. (2018). Control of variable speed wind turbines with doubly fed asynchronous generators for stand-alone applications. Energies, 11, 26.

    Article  Google Scholar 

  • Duggirala, V. N. A., & Gundavarapu, V. N. K. (2016). Improved LVRT for grid connected DFIG using enhanced field oriented control technique with super capacitor as external energy storage system. Engineering Science and Technology-an International Journal, 19, 1742–1752.

    Article  Google Scholar 

  • EmradHossain, Md. (2013). Voltage ride-through capability techniques for DFIG based wind turbines. International Journal of Energy and Power Engineering. https://doi.org/10.1109/IECON.2013.6700413

    Article  Google Scholar 

  • GWEC Report, Technical Report, Global wind energy council, Feb 25, 2019.

  • Hasanien, H. M., & Muyeen, S. M. (2015). Particle swarm optimization- based superconducting magnetic energy storage for low-voltage ride- through capability enhancement in wind energy conversion system. Electric Power Components and Systems, 43, 1278–1288.

    Article  Google Scholar 

  • Hiremath, R., & Moger, T. (2020). Comprehensive review on low voltage ride through capability of wind turbine generators. International Transactions on Electrical Energy Systems. https://doi.org/10.1002/2050-7038.12524

    Article  Google Scholar 

  • Hossain, M. E. (2018). Low voltage ride-through capability improvement methods for DFIG based wind farm. Elsevier -Journal of Electrical Systems and Information Technology, 5(3), 550–561.

    Article  Google Scholar 

  • Jayanthi, P., & Devaraj, D. (2018). DFIG based WECS with enhanced low-voltage-ride-through using enhanced crowbar technique. Elsevier - Journal of Advanced Research in Dynamical and Control Systems, 10, 33–39.

    Google Scholar 

  • Jerin, A. R. A., Kaliannan, P., & Subramaniam, U. (2017). Improved fault ride through capability of DFIG based wind turbines using synchronous reference frame control based dynamic voltage restorer. Elsevier -ISA Transactions, 70, 465–474.

    Article  Google Scholar 

  • Kale, M., & Ozdemir, E. (2005). An adaptive hysteresis band current controller for shunt active power filter. Electric Power Systems Research, 73, 113–119.

    Article  Google Scholar 

  • Kalyani, V., Roselyn, J., Chinnaiyan, N., & Devaraj, D. (2016). Enhanced crowbar protection for fault ride through capability of wind generation systems. International Journal of Power Electronics and Drive System (IJPEDS), 7(4), 1366–1376.

    Article  Google Scholar 

  • Kayikci, M., & Milanovic, J. V. (2008). Assessing transient response of DFIG-based wind plants—the influence of model simplifications and parameters. IEEE Transactions on Power Systems, 23(2), 545–554.

    Article  Google Scholar 

  • Kenan Dosoglu, M. (2020). Enhancement of dynamic modeling for LVRT capability in DFIG-based wind turbines. Iranian Journal of Science and Technology Transactions of Electrical Engineering, 44, 1345–1356.

    Article  Google Scholar 

  • Kenan Dosoglu, M., Guvenc, U., Sonmez, Y., & Yılmaz, C. (2018). Enhancement of demagnetization control for low-voltage ride-through capability in DFIG-based wind farm. Electrical Engineering, 100, 491–498.

    Article  Google Scholar 

  • Le, V., Li, X., Li, Y., Dong, T. L. T., & Le, C. (2016). An innovative control strategy to improve the fault ride-through capability of DFIGs based on wind energy conversion systems. Energies, 9, 1–23.

    Article  Google Scholar 

  • Manohar, G., Venkateshwarlu, S., & Jaya Laxmi, A. (2021). A DFIG-based wind energy conversion system (WECS) for LVRT enhancement using a hybrid approach: an efficient MEHRFA technique. Soft Computing, 25, 2559–2574.

    Article  Google Scholar 

  • Mohammadi, J., Vaez-Zadeh, S., Afsharnia, S., & Daryabeigi, E. (2014). A combined vector and direct power control for dfig-based wind turbines. IEEE Transactions on Sustainable Energy, 5, 767–775.

    Article  Google Scholar 

  • Mohammadpour, H., GhassemZadeh, S., & Tohidi, S. (2015). Symmetrical and asymmetrical low-voltage ride through of doubly-fed induction generator wind turbines using gate controlled series capacitor. IET Renewable Power Generation, 9, 840–846.

    Article  Google Scholar 

  • Moussa, I., & Khedher, A. (2019). Photovoltaic emulator based on PV simulator RT implementation using XSG tools for an FPGA control: Theory and experimentation. International Transactions on Electrical Energy Systems, 29, e12024.

    Article  Google Scholar 

  • Nashed, M. (2015). Superiority of LVRT of grid connected wind energy conversion system using unified power quality controller. IEEE Transactions on Electrical and Electronic Engineering, 6, 1925–1930.

    Google Scholar 

  • Qin, B., Li, H., Zhou, X., Li, J., & Liu, W. (2020). Low-voltage ride-through techniques in DFIG-based wind turbines: A review. Applied Science (MDPI), 10, 2154. https://doi.org/10.3390/app10062154

    Article  CAS  Google Scholar 

  • Rahimi, M., & Parniani, M. (2010). Efficient control scheme of wind turbines with doubly fed induction generators for low-voltage ride-through capability enhancement. Renewable Power Generation–IET, 4, 242–252.

    Article  Google Scholar 

  • Saleh, M. (2014). Fault ride through in grid-connected WECS using FACTS. British Journal of Applied Science and Technology (BJAST), 4(16), 2382–2394.

    Article  Google Scholar 

  • Seman, S., Niiranen, J., Kanerva, S., Arkkio, A., & Saitz, J. (2006). Performance study of a doubly fed wind-power induction generator under network disturbances. IEEE Transactions on Energy Conversion, 21(4), 883–890.

    Article  Google Scholar 

  • Shihabudheen, K., Raju, S. K., & Pillai, G. (2018). Control for grid-connected dfig- based wind energy system using adaptive neuro-fuzzy technique. International Transactions on Electrical Energy Systems., 28, e2526.

    Article  Google Scholar 

  • Taj, T. A., Hasanien, H. M., Alolah, A. I., & Muyeen, S. M. (2015). Transient stability enhancement of a grid connected wind farm using an adaptive neurofuzzy controlled-flywheel energy storage system. IET Renewable Power Generation, 9, 792–800.

    Article  Google Scholar 

  • Tanvir, A. A., Merabet, A., & Beguenane, R. (2015). Real-time control of active and reactive power for doubly fed induction generator (DFIG)- based wind energy conversion system. Energies, 8, 10389–10408.

    Article  Google Scholar 

  • Zhou, X., Tang, Y., & Shi, J. (2017). Enhancing LVRT capability of dfig-based wind turbine systems with SMES series in the rotor side. International Journal of Rotating Machinery, 2017, 1–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Department of Science and Technology (DST-FIST) India for allotting funds to the project SR/FST/ET-I/2018/214 and the management of Kalasalingam Academy of Research and Education for providing infrastructure and facilities for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jayanthi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

1.1 A. Mathematical model of WT

The power harvested by the WT is provided by the relation

$$P = \frac{1}{2}\rho A\mathop V\nolimits^{3} \mathop C\nolimits_{p} \left( {\lambda ,\beta } \right)$$

where the density of air is ρin \(\left( {kg/m3} \right)\);

the rotor blade swept area is A in \(\left( {m2} \right)\);

the speed of the wind is V in \(\left( {m/s} \right)\);

the coefficient of power is Cp;

Cp relies on ƛ the tip speed ratio (TSR) and β the pitch angle

$$\mathop C\nolimits_{p} = \frac{1}{2}\left( {\gamma - 0.022\mathop \beta \nolimits^{2} - 5.6} \right)\mathop e\nolimits^{ - 0.17\gamma }$$
(21)
$$\lambda = \frac{Tip\,Speed}{{Wind\,Speed}}$$
(22)
$$\gamma = 2.237\frac{{\mathop V\nolimits_{{}} }}{{\mathop \omega \nolimits_{\beta } }}$$

ωβ is the angular velocity of the blade in (rad/sec).

1.2 B. Model of drive train

A drive train with high-power-density and compact in size is needed by the DFIG-driven WEC system to transmit the varying input in a very demanding environment. Two masses model drive train is used in this model. The major application of the drive train is to transmit the shaft speed of WT from low to high. The WT inertia and the generator inertia are connected by a single spring shaft.

The mechanical torque of the drive train is given as

$$\mathop T\nolimits_{m} = K\frac{\theta }{n} + D\left( \frac{1}{n} \right)\left( {\frac{d\theta }{{dt}}} \right)$$
(23)
$$\frac{d\theta }{{dt}} = \mathop \omega \nolimits_{g} - \mathop \omega \nolimits_{n}$$
(24)

Motion of WT is

$$\mathop H\nolimits_{m} \frac{{\mathop {d\omega }\nolimits_{m} }}{dt} = \mathop T\nolimits_{\omega } - \mathop T\nolimits_{m}$$
(25)

Motion of generator is

$$\mathop H\nolimits_{g} \frac{{\mathop {d\omega }\nolimits_{g} }}{dt} = \mathop T\nolimits_{e} + \frac{{\mathop T\nolimits_{m} }}{n}$$
(26)

where the torque of WT is \(\mathop T\nolimits_{\omega }\); \(\mathop T\nolimits_{e}\) is the electromagnetic torque; the speed of the rotor of WT is \(\mathop \omega \nolimits_{m}\); the rotor speed of generator is \(\mathop \omega \nolimits_{g}\); the constant of inertia of the WT is \(\mathop H\nolimits_{m}\); the constant of inertia of the generator is \(\mathop H\nolimits_{g}\); the stiffness constant is K; the damping constant is D; the gear ratio is n; θ is the angle among WT rotor and generator rotor

1.3 C. Model of DFIG

The DFIG’s dynamic modeling of a synchronous rotating dq reference frame has been given as:

$$Stator\;voltage\;\mathop V\nolimits_{s} = \mathop R\nolimits_{s} \mathop I\nolimits_{s} + \frac{{d\mathop \varphi \nolimits_{s} }}{dt}$$
(27)
$${\text{ }}V_{{ds}} = {\text{ }}R_{s} {\text{ }}I_{{ds}} - \omega _{s} \phi _{{qs}} + \frac{{d\phi _{{ds}} }}{{dt}}$$
(28)
$${\text{ }}V_{{qs}} = {\text{ }}R_{s} {\text{ }}I_{{qs}} + \omega _{s} \phi _{{ds}} + \frac{{d\phi _{{qs}} }}{{dt}}$$
(29)
$$\phi _{{ds}} = {\text{ }}L_{s} {\text{ }}I_{{ds}} + {\text{ }}L_{m} {\text{ }}I_{{dr}}$$
(30)
$$\phi _{{qs}} = {\text{ }}L_{s} {\text{ }}I_{{qs}} + {\text{ }}L_{m} {\text{ }}I_{{qr}}$$
(31)
$$\phi _{s} = {\text{ }}L_{s} {\text{ }}I_{s} + {\text{ }}L_{m} {\text{ }}I_{r}$$
(32)

where \({R}_{s}\) is the stator resistance, \({I}_{s}\) is the stator current, ɸs is the stator flux, ωs is the stator angular speed; \({L}_{m}\) denotes the mutual inductance,\({ L}_{s}\) denotes the stator inductance,\({ V}_{ds}\) denotes the direct axis voltage of the stator, \({V}_{qs}\) is the quadrature axis voltage of the stator, Ids is the direct axis current of the stator,\({I}_{qs}\) is the quadrature axis current of the stator,\({ I}_{dr}\) is the direct axis rotor current,\({ I}_{qr}\) is the quadrature axis rotor current, and \({I}_{r}\) is the rotor current.

$$Rotor{\mkern 1mu} \;voltage\;{\text{ }}V_{r} = {\text{ }}R_{r} {\text{ }}I_{r} + \frac{{d\phi _{r} }}{{dt}} - j\omega _{m} \phi _{r}$$
(33)
$${\text{ }}V_{{dr}} = {\text{ }}R_{r} {\text{ }}I_{{dr}} - s\omega _{s} \phi _{{qr}} + \frac{{d\phi _{{dr}} }}{{dt}}$$
(34)
$$\mathop V\nolimits_{qr} = \mathop R\nolimits_{r} \mathop I\nolimits_{qr} + s\mathop \omega \nolimits_{s} \mathop \varphi \nolimits_{dr} + \frac{{d\mathop \varphi \nolimits_{qr} }}{dt}$$
(35)
$$\phi _{{dr}} = {\text{ }}L_{r} {\text{ }}I_{{dr}} + {\text{ }}L_{m} {\text{ }}I_{{ds}}$$
(36)
$$\phi _{{qr}} = L_{r} I_{{qr}} + L_{m} I_{{qs}}$$
(37)
$$\phi _{r} = L_{r} I_{r} + L_{m} I_{s}$$
(38)
$$slip\;\mathop \omega \nolimits_{slip} = \frac{{\mathop \omega \nolimits_{s} - \mathop \omega \nolimits_{r} }}{{\mathop \omega \nolimits_{s} }}$$
(39)

where Rr is the rotor resistance; ɸr is the rotor flux; ωr is the rotor angular speed; ωm is the generator angular speed; Lr is the rotor inductance; Vdr is the direct axis voltage of the rotor; Vqr is the quadrature axis voltage of the rotor; Idr is the direct axis current of the rotor; Iqr is the quadrature axis current of the rotor; s is slip.

1.4 D. Modelling of converter

The power electronic apparatus used in the WEC system are bi-directional power converters. It has two voltage source converters (VSC) with three-phase switched PWM and a DC bus that connects the back-to-back converters (B2B) through a DC-link capacitor.

The average model of the B2B in the WEC system is explained as follows:

After Park’s transformation of variables,

$$\frac{d}{dt}\left[ {\begin{array}{*{20}c} {\mathop I\nolimits_{d1} } \\ {\mathop I\nolimits_{q1} } \\ \end{array} } \right] = \frac{1}{{\mathop L\nolimits_{1} }}\left[ {\begin{array}{*{20}c} {\mathop D\nolimits_{d1} } \\ {\mathop D\nolimits_{q1} } \\ \end{array} } \right]\mathop V\nolimits_{dc1} - \frac{1}{{\mathop L\nolimits_{1} }}\left[ {\begin{array}{*{20}c} {\mathop V\nolimits_{d} } \\ {\mathop V\nolimits_{q} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} 0 & { - \omega } \\ \omega & 0 \\ \end{array} } \right].\left[ {\begin{array}{*{20}c} {\mathop I\nolimits_{d1} } \\ {\mathop I\nolimits_{q1} } \\ \end{array} } \right]$$
(40)
$$\frac{d}{dt}\left[ {\begin{array}{*{20}c} {\mathop I\nolimits_{d2} } \\ {\mathop I\nolimits_{q2} } \\ \end{array} } \right] = \frac{1}{{\mathop L\nolimits_{2} }}\left[ {\begin{array}{*{20}c} {\mathop D\nolimits_{d2} } \\ {\mathop D\nolimits_{q2} } \\ \end{array} } \right]\mathop V\nolimits_{dc2} - \frac{1}{{\mathop L\nolimits_{2} }}\left[ {\begin{array}{*{20}c} {\mathop V\nolimits_{d} } \\ {\mathop V\nolimits_{q} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} 0 & { - \omega } \\ \omega & 0 \\ \end{array} } \right].\left[ {\begin{array}{*{20}c} {\mathop I\nolimits_{d2} } \\ {\mathop I\nolimits_{q2} } \\ \end{array} } \right]$$
(41)
$$\frac{d}{dt}\left[ {\begin{array}{*{20}c} {\mathop V\nolimits_{d} } \\ {\mathop V\nolimits_{q} } \\ \end{array} } \right] = \frac{1}{2C}\left[ {\begin{array}{*{20}c} {\mathop I\nolimits_{d1} } \\ {\mathop I\nolimits_{q1} } \\ \end{array} } \right] + \frac{1}{2C}\left[ {\begin{array}{*{20}c} {\mathop I\nolimits_{d2} } \\ {\mathop I\nolimits_{q2} } \\ \end{array} } \right] - \frac{1}{RC}\left[ {\begin{array}{*{20}c} {\mathop V\nolimits_{d} } \\ {\mathop V\nolimits_{q} } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} 0 & { - \omega } \\ \omega & 0 \\ \end{array} } \right].\left[ {\begin{array}{*{20}c} {\mathop V\nolimits_{d} } \\ {\mathop V\nolimits_{q} } \\ \end{array} } \right]$$
(42)

If the input DC sources are assumed to be ideal, then

$$\frac{d}{dt}\left[ {\begin{array}{*{20}c} {\mathop {\mathop I\nolimits_{d1} }\limits^{ - } } \\ {\mathop {\mathop I\nolimits_{q1} }\limits^{ - } } \\ \end{array} } \right] = \frac{1}{{\mathop L\nolimits_{1} }}\left[ {\begin{array}{*{20}c} {\mathop {\mathop D\nolimits_{d1} }\limits^{ - } } \\ {\mathop {\mathop D\nolimits_{q1} }\limits^{ - } } \\ \end{array} } \right]\mathop V\nolimits_{dc1} - \frac{1}{{\mathop L\nolimits_{1} }}\left[ {\begin{array}{*{20}c} {\mathop {\mathop V\nolimits_{d} }\limits^{ - } } \\ {\mathop {\mathop V\nolimits_{q} }\limits^{ - } } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} 0 & { - \omega } \\ \omega & 0 \\ \end{array} } \right].\left[ {\begin{array}{*{20}c} {\mathop {\mathop I\nolimits_{d1} }\limits^{ - } } \\ {\mathop {\mathop I\nolimits_{q1} }\limits^{ - } } \\ \end{array} } \right]$$
(43)
$$\frac{d}{dt}\left[ {\begin{array}{*{20}c} {\mathop {\mathop I\nolimits_{d2} }\limits^{ - } } \\ {\mathop {\mathop I\nolimits_{q2} }\limits^{ - } } \\ \end{array} } \right] = \frac{1}{{\mathop L\nolimits_{2} }}\left[ {\begin{array}{*{20}c} {\mathop {\mathop D\nolimits_{d2} }\limits^{ - } } \\ {\mathop {\mathop D\nolimits_{q2} }\limits^{ - } } \\ \end{array} } \right]\mathop V\nolimits_{dc1} - \frac{1}{{\mathop L\nolimits_{2} }}\left[ {\begin{array}{*{20}c} {\mathop {\mathop V\nolimits_{d} }\limits^{ - } } \\ {\mathop {\mathop V\nolimits_{q} }\limits^{ - } } \\ \end{array} } \right] - \left[ {\begin{array}{*{20}c} 0 & { - \omega } \\ \omega & 0 \\ \end{array} } \right].\left[ {\begin{array}{*{20}c} {\mathop {\mathop I\nolimits_{d2} }\limits^{ - } } \\ {\mathop {\mathop I\nolimits_{q2} }\limits^{ - } } \\ \end{array} } \right]$$
(44)
$$\frac{d}{dt}\left[ {\begin{array}{*{20}c} {\mathop {\mathop V\nolimits_{d} }\limits^{ - } } \\ {\mathop {\mathop V\nolimits_{q} }\limits^{ - } } \\ \end{array} } \right] = \frac{1}{2C}\left( {\left[ {\begin{array}{*{20}c} {\mathop {\mathop I\nolimits_{d1} }\limits^{ - } } \\ {\mathop {\mathop I\nolimits_{q1} }\limits^{ - } } \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} {\mathop {\mathop I\nolimits_{d2} }\limits^{ - } } \\ {\mathop {\mathop I\nolimits_{q2} }\limits^{ - } } \\ \end{array} } \right]} \right) - \left[ {\begin{array}{*{20}c} \frac{1}{RC} & { - \omega } \\ \omega & \frac{1}{RC} \\ \end{array} } \right].\left[ {\begin{array}{*{20}c} {\mathop {\mathop V\nolimits_{d} }\limits^{ - } } \\ {\mathop {\mathop V\nolimits_{q} }\limits^{ - } } \\ \end{array} } \right]$$
(45)

Equations (43) to (45) could be written in general matrix structure as:

X = AX + BU.

Y = CX.where \(X\) is the state vector and \(U\) is the control vector

$$X = \mathop {\left[ {\begin{array}{*{20}c} {\mathop {\mathop V\nolimits_{d} }\limits^{ - } } & {\mathop {\mathop V\nolimits_{q} }\limits^{ - } } & {\mathop {\mathop I\nolimits_{d1} }\limits^{ - } } & {\mathop {\mathop I\nolimits_{q1} }\limits^{ - } } & {\mathop {\mathop I\nolimits_{d2} }\limits^{ - } } & {\mathop {\mathop I\nolimits_{q2} }\limits^{ - } } \\ \end{array} } \right]}\nolimits^{T}$$
(46)
$$U = \mathop {\left[ {\begin{array}{*{20}c} {\mathop {\mathop D\nolimits_{d1} }\limits^{ - } } & {\mathop {\mathop D\nolimits_{q1} }\limits^{ - } } & {\mathop {\mathop D\nolimits_{d2} }\limits^{ - } } & {\mathop {\mathop D\nolimits_{q2} }\limits^{ - } } \\ \end{array} } \right]}\nolimits^{T}$$
(47)
$$C = I$$
(48)
$$A = \left[ {\begin{array}{*{20}c} { - 1/RC} & \omega & {1/2C} & 0 & {1/2C} & 0 \\ { - \omega } & { - 1/RC} & 0 & {1/2C} & 0 & {1/2C} \\ { - 1/\mathop L\nolimits_{1} } & 0 & 0 & \omega & 0 & 0 \\ 0 & { - 1/\mathop L\nolimits_{1} } & { - \omega } & 0 & 0 & 0 \\ { - 1/\mathop L\nolimits_{2} } & 0 & 0 & 0 & 0 & \omega \\ 0 & { - 1/\mathop L\nolimits_{2} } & 0 & 0 & { - \omega } & 0 \\ \end{array} } \right]$$
(49)
$$B = \mathop {\left[ {\begin{array}{*{20}c} 0 & 0 & {\mathop V\nolimits_{dc1} /\mathop L\nolimits_{1} } & 0 & 0 & 0 \\ 0 & 0 & 0 & {\mathop V\nolimits_{dc1} /\mathop L\nolimits_{1} } & 0 & 0 \\ 0 & 0 & 0 & 0 & {\mathop V\nolimits_{dc1} /\mathop L\nolimits_{1} } & 0 \\ 0 & 0 & 0 & 0 & 0 & {\mathop V\nolimits_{dc1} /\mathop L\nolimits_{1} } \\ \end{array} } \right]}\nolimits^{T}$$
(50)

1.5 E. Derivation for AHC bandwidth

$$\begin{gathered} \mathop {dI}\nolimits_{ag}^{ + } = \frac{1}{L}\left( {0.5\mathop V\nolimits_{dc} - \mathop V\nolimits_{ag} } \right) \hfill \\ \hfill \\ \end{gathered}$$
(51)
$$\begin{gathered} \mathop {dI}\nolimits_{ag}^{ - } = - \frac{1}{L}\left( {0.5\mathop V\nolimits_{dc} + \mathop V\nolimits_{ag} } \right) \hfill \\ \hfill \\ \end{gathered}$$
(52)

where Vag is the per phase grid voltage, Iag is the grid current per phase, and L is the inductance of the line. T1 and T2 are the switching periods.

$$\mathop T\nolimits_{1} + \mathop T\nolimits_{2} = T = \frac{1}{f}$$
(53)

Here, the modulation frequency is denoted as f.

$$\frac{{d\mathop I\nolimits_{ag}^{ + } }}{dt}\mathop T\nolimits_{1} - \frac{{d\mathop I\nolimits_{agref} }}{dt}\mathop T\nolimits_{1} = 2\mathop {HB}\nolimits_{a}$$
(54)
$$\frac{{d\mathop I\nolimits_{ag}^{ - } }}{dt}\mathop T\nolimits_{2} - \frac{{d\mathop I\nolimits_{agref} }}{dt}\mathop T\nolimits_{1} = - 2\mathop {HB}\nolimits_{a}$$
(55)

Appendix 2

DFIG-driven WECS parameters.

Rated power of DFIG:\(1.5 MW\)

Stator_ Resistance: \(0.023 p.u\)

Stator voltage:\(575 V\)

Rotor_ Resistance: \(0.016 p.u\)

Rotor voltage:\(1975 V\)

Stator_Leakage Inductance: \(0.18 p.u\)

DC link capacitor voltage:\(1150 V\)

Rotor_Leakage Inductance: \(0.16 p.u\)

Capacitance of DC link capacitor:\(0.1 F\)

Mutual_Inductance: \(2.9 p.u\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayanthi, P., Devaraj, D. LVRT capability enhancement in the grid-connected DFIG-driven WECS using adaptive hysteresis current controller. Environ Dev Sustain 24, 7593–7621 (2022). https://doi.org/10.1007/s10668-021-01684-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01684-7

Keywords

Navigation