Skip to main content

Advertisement

Log in

Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The surface tension (ST) of ionic liquids (ILs) and their accompanying mixtures allows engineers to accurately arrange new processes on the industrial scale. Without any doubt, experimental methods for the specification of the ST of every supposable IL and its mixtures with other compounds would be an arduous job. Also, experimental measurements are effortful and prohibitive; thus, a precise estimation of the property via a dependable method would be greatly desirable. For doing this task, a new modeling method according to artificial neural network (ANN) disciplined by four optimization algorithms, namely teaching–learning-based optimization (TLBO), particle swarm optimization (PSO), genetic algorithm (GA) and imperialist competitive algorithm (ICA), has been suggested to estimate ST of the binary ILs mixtures. For training and testing the applied network, a set of 748 data points of binary ST of IL systems within the temperature range of 283.1–348.15 K was utilized. Furthermore, an outlier analysis was used to discover doubtful data points. Gained values of MSE & R2 were 0.0000007 and 0.993, 0.0000002 and 0.998, 0.0000004 and 0.996 and 0.0000006 and 0.994 for the ICA-ANN, TLBO-ANN, PSO-ANN and GA-ANN, respectively. Results demonstrated that the experimental data and predicted values of the TLBO-ANN model for such target are wholly matched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

IL:

Ionic liquid

ANN:

Artificial neural network

MRE:

Mean relative error

ICA:

Imperialist competitive algorithm

R2 :

Coefficient of determination

STD:

Standard deviation

MLP:

Multi-layer perceptron

SVM:

Support vector machine

ST:

Surface tension

MSE:

Mean squared error

BP:

Back-propagation

PSO:

Particle swarm optimization

EC:

Evolutionary computation

ARD:

Average relative deviation

GA:

Genetic algorithm

TLBO:

Teaching–learning-based optimization

RMSE:

Root-mean-squared error

DT:

Decision tree

FS:

Fuzzy system

GEP:

Gene expression programming

RBF:

Radial basis function

BP:

Backpropagation

AI:

Artificial intelligence

r:

Relevancy factor

References

  • Ahmadi, M. A., et al. (2013). Evolving artificial neural network and imperialist competitive algorithm for prediction oil flow rate of the reservoir. Applied Soft Computing, 13(2), 1085–1098.

    Google Scholar 

  • Ahmadi, M. H., et al. (2020). Evolving connectionist approaches to compute thermal conductivity of TiO2/water nanofluid. Physica A: Statistical Mechanics and its Applications, 540, 122489.

    CAS  Google Scholar 

  • Ahmed, J. A., & Sarma, A. K. (2007). Artificial neural network model for synthetic streamflow generation. Water Resources Management, 21(6), 1015–1029.

    Google Scholar 

  • Ahosseini, A., et al. (2009). Phase equilibrium, volumetric, and interfacial properties of the ionic liquid, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide and 1-octene. Journal of Chemical & Engineering Data, 55(4), 1611–1617.

    Google Scholar 

  • Alrashed, A. A., et al. (2018). Effects on thermophysical properties of carbon based nanofluids: experimental data, modelling using regression, ANFIS and ANN. International Journal of Heat and Mass Transfer, 125, 920–932.

    CAS  Google Scholar 

  • Asl, H. F., et al. (2020). Experimental investigation into l-Arg and l-Cys eco-friendly surfactants in enhanced oil recovery by considering IFT reduction and wettability alteration. Petroleum Science, 17(1), 105–117.

    CAS  Google Scholar 

  • Atashrouz, S., et al. (2017). Implementation of soft computing approaches for prediction of physicochemical properties of ionic liquid mixtures. Korean Journal of Chemical Engineering, 34(2), 425–439.

    CAS  Google Scholar 

  • Atashrouz, S., Mirshekar, H., & Mohaddespour, A. (2017). A robust modeling approach to predict the surface tension of ionic liquids. Journal of Molecular Liquids, 236, 344–357.

    CAS  Google Scholar 

  • Baghban, A., et al. (2015). Phase equilibrium modeling of semi-clathrate hydrates of seven commonly gases in the presence of TBAB ionic liquid promoter based on a low parameter connectionist technique. The Journal of Supercritical Fluids, 101, 184–192.

    CAS  Google Scholar 

  • Baghban, A., Ahmadi, M. A., & Shahraki, B. H. (2015). Prediction carbon dioxide solubility in presence of various ionic liquids using computational intelligence approaches. The Journal of supercritical fluids, 98, 50–64.

    CAS  Google Scholar 

  • Bagherzadeh, S. A., et al. (2019). A novel sensitivity analysis model of EANN for F-MWCNTs–Fe3O4/EG nanofluid thermal conductivity: Outputs predicted analytically instead of numerically to more accuracy and less costs. Physica A: Statistical Mechanics and Its Applications, 521, 406–415.

    CAS  Google Scholar 

  • Bahrami, M., et al. (2019). Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid. Physica A: Statistical Mechanics and its Applications, 519, 159–168.

    CAS  Google Scholar 

  • Bakthavatchalam, B., et al. (2020). Comparative evaluation on the thermal properties and stability of MWCNT nanofluid with conventional surfactants and ionic liquid. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-020-10374-x.

    Article  Google Scholar 

  • Bemani, A., et al. (2019). Applying ANN, ANFIS, and LSSVM models for estimation of acid solvent solubility in supercritical CO2. arXiv preprint. http://www.techscience.com/cmc/v63n3/38869.

  • Carvalho, P. J., et al. (2008). Surface tensions for the 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids. Journal of Chemical & Engineering Data. https://doi.org/10.1021/je800069z.

    Article  Google Scholar 

  • Chen, G., et al. (2014). The genetic algorithm based back propagation neural network for MMP prediction in CO2-EOR process. Fuel, 126, 202–212.

    CAS  Google Scholar 

  • Choudhury, S., Saha, A. K., & Majumder, M. (2020). Optimal location selection for installation of surface water treatment plant by Gini coefficient-based analytical hierarchy process. Environment, Development and Sustainability, 22, 4073–4099.

    Google Scholar 

  • Chu, Z.-Q., et al. (2017). Modeling of wax deposition produced in the pipelines using PSO-ANFIS approach. Petroleum Science and Technology, 35(20), 1974–1981.

    CAS  Google Scholar 

  • Črepinšek, M., Liu, S.-H., & Mernik, L. (2012). A note on teaching–learning-based optimization algorithm. Information Sciences, 212, 79–93.

    Google Scholar 

  • Daneshfar, R., et al. (2020a). A neural computing strategy to estimate dew-point pressure of gas condensate reservoirs. Petroleum Science and Technology. https://doi.org/10.1080/10916466.2020.1780257.

    Article  Google Scholar 

  • Daneshfar, R., et al. (2020b). Estimating the heat capacity of non-Newtonian ionanofluid systems using ANN, ANFIS, and SGB tree algorithms. Applied Sciences, 10(18), 6432.

    CAS  Google Scholar 

  • Daryasafar, A., Keykhosravi, A., & Shahbazi, K. (2019). Modeling CO2 wettability behavior at the interface of brine/CO2/mineral: Application to CO2 geo-sequestration. Journal of Cleaner Production, 239, 118101.

    CAS  Google Scholar 

  • De, P., & Majumder, M. (2019). Allocation of energy in surface water treatment plants for maximum energy conservation. Environment, Development and Sustainability, 22, 3347–3370.

    Google Scholar 

  • Dehaghani, A. H. S., et al. (2019). Simulation study of the Gachsaran asphaltene behavior within the interface of oil/water emulsion: a case study. Colloid and Interface Science Communications, 33, 100202.

    CAS  Google Scholar 

  • Dehaghani, A. H. S., & Daneshfar, R. (2019). How much would silica nanoparticles enhance the performance of low-salinity water flooding? Petroleum Science, 16(3), 591–605.

    CAS  Google Scholar 

  • Deng, T., Liu, F.-H., & Jia, G.-Z. (2020). Prediction carbon dioxide solubility in ionic liquids based on deep learning. Molecular Physics, 118(6), e1652367.

    Google Scholar 

  • Dong, Q., et al. (2006). Ionic Liquids Database (ILThermo). http://ilthermo.boulder.nist.gov/ILThermo/mainmenu.uix.

  • Dong, Q., et al. (2007). ILThermo: a free-access web database for thermodynamic properties of ionic liquids. Journal of Chemical & Engineering Data, 52(4), 1151–1159.

    CAS  Google Scholar 

  • Dorofki, M., et al. (2012). Comparison of artificial neural network transfer functions abilities to simulate extreme runoff data. International Proceedings of Chemical, Biological and Environmental Engineering, 33, 39–44.

    Google Scholar 

  • Du, K. L., & Swamy, M. N. (2006). Neural networks in a softcomputing framework. . Springer.

    Google Scholar 

  • Faghihi, S., Keykhosravi, A., & Shahbazi, K. (2019). Modeling of kinetic adsorption of natural surfactants on sandstone minerals: Spotlight on accurate prediction and data evaluation. Colloid and Interface Science Communications, 33, 100208.

    CAS  Google Scholar 

  • Geppert-Rybczyńska, M., et al. (2013). Thermodynamic surface properties of [BMIm][NTf2] or [EMIm][NTf2] binary mixtures with tetrahydrofuran, acetonitrile or dimethylsulfoxide. The Journal of Chemical Thermodynamics, 62, 104–110.

    Google Scholar 

  • Ghadiri, M., et al. (2020). An insight into the estimation of relative humidity of air using artificial intelligence schemes. Environment, Development and Sustainability,. https://doi.org/10.1007/s10668-020-01053-w.

    Article  Google Scholar 

  • Gharagheizi, F., et al. (2013). Development of corresponding states model for estimation of the surface tension of chemical compounds. AIChE Journal, 59(2), 613–621.

    CAS  Google Scholar 

  • Gharagheizi, F., Ilani-Kashkouli, P., & Mohammadi, A. H. (2012). Group contribution model for estimation of surface tension of ionic liquids. Chemical engineering science, 78, 204–208.

    CAS  Google Scholar 

  • Girosi, F., & Poggio, T. (1990). Networks and the best approximation property. Biological Cybernetics, 63(3), 169–176.

    Google Scholar 

  • Harada, M., Yamamoto, M., & Sakata, M. (2020). Temperature dependence on the size control of palladium nanoparticles by chemical reduction in nonionic surfactant/ionic liquid hybrid systems. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2020.113255.

    Article  Google Scholar 

  • Harris, K. R., Kanakubo, M., & Woolf, L. A. (2006). Temperature and pressure dependence of the viscosity of the ionic liquids 1-methyl-3-octylimidazolium hexafluorophosphate and 1-methyl-3-octylimidazolium tetrafluoroborate. Journal of Chemical & Engineering Data, 51(3), 1161–1167.

    CAS  Google Scholar 

  • Hashemkhani, M., et al. (2015). Prediction of the binary surface tension of mixtures containing ionic liquids using support vector machine algorithms. Journal of Molecular Liquids, 211, 534–552.

    CAS  Google Scholar 

  • Hezave, A. Z., Lashkarbolooki, M., & Raeissi, S. (2012). Using artificial neural network to predict the ternary electrical conductivity of ionic liquid systems. Fluid Phase Equilibria, 314, 128–133.

    CAS  Google Scholar 

  • Hezave, A. Z., Lashkarbolooki, M., & Raeissi, S. (2013). Correlating bubble points of ternary systems involving nine solvents and two ionic liquids using artificial neural network. Fluid Phase Equilibria, 352, 34–41.

    Google Scholar 

  • Hezave, A. Z., Raeissi, S., & Lashkarbolooki, M. (2012b). Estimation of thermal conductivity of ionic liquids using a perceptron neural network. Industrial & Engineering Chemistry Research, 51(29), 9886–9893.

    CAS  Google Scholar 

  • Jefferys, E. (1993) Design applications of genetic algorithms. in SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.

  • Jiang, H., et al. (2013). Density and surface tension of pure ionic liquid 1-butyl-3-methyl-imidazolium l-lactate and its binary mixture with alcohol and water. The Journal of Chemical Thermodynamics, 64, 1–13.

    CAS  Google Scholar 

  • Kardani, M. N., et al. (2018). Group contribution methods for estimating CO2 absorption capacities of imidazolium and ammonium-based polyionic liquids. Journal of Cleaner Production, 203, 601–618.

    CAS  Google Scholar 

  • Kardani, M. N., et al. (2019). Phase behavior modeling of asphaltene precipitation utilizing RBF-ANN approach. Petroleum Science and Technology, 37(16), 1861–1867.

    CAS  Google Scholar 

  • Kardani, M. N., & Baghban, A. (2017). Utilization of LSSVM strategy to predict water content of sweet natural gas. Petroleum Science and Technology, 35(8), 761–767.

    CAS  Google Scholar 

  • Karimipour, A., et al. (2018). Synthesized CuFe2O4/SiO2 nanocomposites added to water/EG: evaluation of the thermophysical properties beside sensitivity analysis & EANN. International Journal of Heat and Mass Transfer, 127, 1169–1179.

    CAS  Google Scholar 

  • Karimipour, A., et al. (2019). A novel nonlinear regression model of SVR as a substitute for ANN to predict conductivity of MWCNT-CuO/water hybrid nanofluid based on empirical data. Physica A: Statistical Mechanics and its Applications, 521, 89–97.

    CAS  Google Scholar 

  • Kermanpour, F., & Niakan, H. (2012). Measurement and modeling the excess molar properties of binary mixtures of [C6mim][BF4]+ 3-amino-1-propanol and {[C6mim][BF4]+ isobutanol}: Application of Prigogine–Flory–Patterson theory. The Journal of Chemical Thermodynamics, 48, 129–139.

    CAS  Google Scholar 

  • Keykhosravi, A., Simjoo, M. (2018) Application of gamma-alumina nanoparticles to enhance spontaneous imbibition in low permeable, oil-wet carbonate rocks. in 80th EAGE Conference and Exhibition 2018. 2018. European Association of Geoscientists & Engineers.

  • Keykhosravi, A., & Simjoo, M. (2019). Insights into stability of silica nanofluids in brine solution coupled with rock wettability alteration: An enhanced oil recovery study in oil-wet carbonates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 583, 124008.

    CAS  Google Scholar 

  • Keykhosravi, A., & Simjoo, M. (2020). Enhancement of capillary imbibition by Gamma-Alumina nanoparticles in carbonate rocks: Underlying mechanisms and scaling analysis. Journal of Petroleum Science and Engineering, 187, 106802.

    CAS  Google Scholar 

  • Lashkarblooki, M., et al. (2012). Viscosity prediction of ternary mixtures containing ILs using multi-layer perceptron artificial neural network. Fluid Phase Equilibria, 326, 15–20.

    CAS  Google Scholar 

  • Lashkarbolooki, M. (2017). Artificial neural network modeling for prediction of binary surface tension containing ionic liquid. Separation Science and Technology, 52(8), 1454–1467.

    CAS  Google Scholar 

  • Lashkarbolooki, M., Hezave, A. Z., & Ayatollahi, S. (2012). Artificial neural network as an applicable tool to predict the binary heat capacity of mixtures containing ionic liquids. Fluid Phase Equilibria, 324, 102–107.

    CAS  Google Scholar 

  • Lashkarbolooki, M., Hezave, A. Z., & Babapoor, A. (2013). Correlation of density for binary mixtures of methanol+ ionic liquids using back propagation artificial neural network. Korean Journal of Chemical Engineering, 30(1), 213–220.

    CAS  Google Scholar 

  • Lazzús, J. A., et al. (2017). Estimating the temperature-dependent surface tension of ionic liquids using a neural network-based group contribution method. Industrial & Engineering Chemistry Research, 56(23), 6869–6886.

    Google Scholar 

  • Liu, Y., et al. (2016). Adsorption behavior of low-concentration imidazolium-based ionic liquid surfactant on silica nanoparticles. Langmuir, 32(11), 2582–2590.

    CAS  Google Scholar 

  • Low, K., Kobayashi, R., & Izgorodina, E. I. (2020). The effect of descriptor choice in machine learning models for ionic liquid melting point prediction. The Journal of Chemical Physics, 153(10), 104101.

    CAS  Google Scholar 

  • Machida, H., et al. (2010). Measurement and correlation of high pressure densities of ionic liquids, 1-Ethyl-3-methylimidazolium l-Lactate ([emim][Lactate]), 2-Hydroxyethyl-trimethylammonium l-Lactate ([(C2H4OH)(CH3) 3N][Lactate]), and 1-Butyl-3-methylimidazolium chloride ([bmim][Cl]). Journal of Chemical & Engineering Data, 56(4), 923–928.

    Google Scholar 

  • Majumder, P., Majumder, M., & Saha, A. K. (2019). Real-time monitoring of power production in modular hydropower plant: most significant parameter approach. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-019-00369-6.

    Article  Google Scholar 

  • Mallard, W., Linstrom P. (2000) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg, MD, 20899.

  • Mohanraj, M., Jayaraj, S., & Muraleedharan, C. (2015). Applications of artificial neural networks for thermal analysis of heat exchangers: A review. International Journal of Thermal Sciences, 90, 150–172.

    Google Scholar 

  • Moradikazerouni, A., et al. (2019). Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting. Physica A: Statistical Mechanics and its Applications, 521, 138–145.

    CAS  Google Scholar 

  • Mosallanejad, M. R., Khosravi-Nikou, M. R., & Shaahmadi, F. (2018). Liquid-liquid extraction of alcohols from their azeotropic mixtures with hexane using ionic liquid. Journal of Chemical & Engineering Data, 63(9), 3482–3487.

    CAS  Google Scholar 

  • Mulero, Á., Cachadiña, I., & Valderrama, J. O. (2017). Artificial neural network for the correlation and prediction of surface tension of refrigerants. Fluid Phase Equilibria, 451, 60–67.

    CAS  Google Scholar 

  • Nabipour, N., et al. (2020). Estimating biofuel density via a soft computing approach based on intermolecular interactions. Renewable Energy, 152, 1086–1098.

    CAS  Google Scholar 

  • Nazari, S., et al. (2020). A novel technique based on artificial intelligence for modeling the required temperature of a solar bread cooker equipped with concentrator through experimental data. Food and Bioproducts Processing, 123, 437–449.

    Google Scholar 

  • Nguyen, H., Bui, X.-N., & Moayedi, H. (2019). A comparison of advanced computational models and experimental techniques in predicting blast-induced ground vibration in open-pit coal mine. Acta Geophysica. https://doi.org/10.1007/s11600-019-00304-3.

    Article  Google Scholar 

  • Oliveira, M., et al. (2012). Surface tension of binary mixtures of 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids: experimental measurements and soft-SAFT modeling. The Journal of Physical Chemistry B, 116(40), 12133–12141.

    CAS  Google Scholar 

  • Oz, E., et al. (2020). Surface propensity of anions in a binary ionic liquid mixture assessed by full-range angle-resolved-XPS and surface tension measurements. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry. https://doi.org/10.1002/cphc.202000750.

    Article  Google Scholar 

  • Park, J., & Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural computation, 3(2), 246–257.

    CAS  Google Scholar 

  • Peng, Y., et al. (2020). Develop optimal network topology of artificial neural network (AONN) to predict the hybrid nanofluids thermal conductivity according to the empirical data of Al2O3–Cu nanoparticles dispersed in ethylene glycol. Physica A: Statistical Mechanics and its Applications. https://doi.org/10.1016/j.physa.2019.124015.

    Article  Google Scholar 

  • Qu, S., Zhao, L., & Xiong, Z. (2020). Cross-layer congestion control of wireless sensor networks based on fuzzy sliding mode control. Neural Computing and Applications. https://doi.org/10.1007/s00521-020-04758-1.

    Article  Google Scholar 

  • Rao, R. V., Savsani, V. J., & Vakharia, D. (2012). Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Information Sciences, 183(1), 1–15.

    Google Scholar 

  • Rilo, E., et al. (2009). Density and surface tension in binary mixtures of CnMIM-BF4 ionic liquids with water and ethanol. Fluid Phase Equilibria, 285(1–2), 83–89.

    CAS  Google Scholar 

  • Rilo, E., et al. (2012). Surface tension of four binary systems containing (1-ethyl-3-methyl imidazolium alkyl sulphate ionic liquid+ water or+ ethanol). The Journal of Chemical Thermodynamics, 49, 165–171.

    CAS  Google Scholar 

  • Romero, C., & Carter, J. (2001). Using genetic algorithms for reservoir characterisation. Journal of Petroleum Science and Engineering, 31(2–4), 113–123.

    CAS  Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature. https://doi.org/10.1038/323533a0.

    Article  Google Scholar 

  • Safaei, M. R., et al. (2019). Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Physica A: Statistical Mechanics and its Applications, 519, 209–216.

    CAS  Google Scholar 

  • Schilling, R. J., Carroll, J. J., & Al-Ajlouni, A. F. (2001). Approximation of nonlinear systems with radial basis function neural networks. IEEE Transactions on Neural Networks, 12(1), 1–15.

    CAS  Google Scholar 

  • Seki, S., et al. (2012). Comprehensive refractive index property for room-temperature ionic liquids. Journal of Chemical & Engineering Data, 57(8), 2211–2216.

    CAS  Google Scholar 

  • Shaahmadi, F., Hashemi Shahraki, B., & Farhadi, A. (2018). Liquid–liquid extraction of toluene from its mixtures with aliphatic hydrocarbons using an ionic liquid as the solvent. Separation Science and Technology. https://doi.org/10.1080/01496395.2018.1449859.

    Article  Google Scholar 

  • Shojaeian, A. (2019). Surface tension measurements of aqueous 1-alkyle-3-methylimidazolume tetrafluoroborate [Cnmim][BF4](n= 2, 4, 6) solutions and modeling surface tension of ionic liquid binary mixtures using six various models. Thermochimica Acta, 673, 119–128.

    CAS  Google Scholar 

  • Shojaeian, A., & Asadizadeh, M. (2020). Prediction of surface tension of the binary mixtures containing ionic liquid using heuristic approaches; An input parameters investigation. Journal of Molecular Liquids, 298, 111976.

    CAS  Google Scholar 

  • Soleimani, R., et al. (2018). Toward an intelligent approach for predicting surface tension of binary mixtures containing ionic liquids. Korean Journal of Chemical Engineering, 35(7), 1556–1569.

    CAS  Google Scholar 

  • Tajikmansori, A., Hosseini, M., & Dehaghani, A. H. S. (2020). Mechanistic study to investigate the injection of surfactant assisted smart water in carbonate rocks for enhanced oil recovery: An experimental approach. Journal of Molecular Liquids. https://doi.org/10.1016/j.molliq.2020.114648.

    Article  Google Scholar 

  • Tariq, M., et al. (2012). Surface tension of ionic liquids and ionic liquid solutions. Chemical Society Reviews, 41(2), 829–868.

    CAS  Google Scholar 

  • Troncoso, J., et al. (2006). Thermodynamic properties of imidazolium-based ionic liquids: densities, heat capacities, and enthalpies of fusion of [bmim][PF6] and [bmim][NTf2]. Journal of Chemical & Engineering Data, 51(5), 1856–1859.

    CAS  Google Scholar 

  • Vakili-Nezhaad, G., et al. (2012). Effect of temperature on the physical properties of 1-butyl-3-methylimidazolium based ionic liquids with thiocyanate and tetrafluoroborate anions, and 1-hexyl-3-methylimidazolium with tetrafluoroborate and hexafluorophosphate anions. The Journal of Chemical Thermodynamics, 54, 148–154.

    CAS  Google Scholar 

  • Vanani, M. B., Daneshfar, R., & Khodapanah, E. (2019). A novel MLP approach for estimating asphaltene content of crude oil. Petroleum Science and Technology, 37(22), 2238–2245.

    CAS  Google Scholar 

  • Vega, L. F., et al. (2010). Modeling ionic liquids and the solubility of gases in them: recent advances and perspectives. Fluid Phase Equilibria, 294(1–2), 15–30.

    CAS  Google Scholar 

  • Wandschneider, A., Lehmann, J. K., & Heintz, A. (2008). Surface tension and density of pure ionic liquids and some binary mixtures with 1-propanol and 1-butanol. Journal of Chemical & Engineering Data, 53(2), 596–599.

    CAS  Google Scholar 

  • Wang, J.-Y., et al. (2011b). Thermophysical properties of pure 1-ethyl-3-methylimidazolium methylsulphate and its binary mixtures with alcohols. Fluid Phase Equilibria, 305(2), 114–120.

    CAS  Google Scholar 

  • Wang, J.-Y., et al. (2011a). Density and surface tension of pure 1-ethyl-3-methylimidazolium L-lactate ionic liquid and its binary mixtures with water. The Journal of Chemical Thermodynamics, 43(5), 800–804.

    CAS  Google Scholar 

  • Wang, Z., Song, Z., & Zhou, T. (2021). Machine learning for ionic liquid toxicity prediction. Processes, 9(1), 65.

    Google Scholar 

  • Wei, Y., et al. (2010). Physicochemical property estimation of an ionic liquid based on glutamic acid−BMIGlu. Journal of Chemical & Engineering Data, 55(7), 2616–2619.

    CAS  Google Scholar 

  • Wu, H., et al. (2019). Present a new multi objective optimization statistical Pareto frontier method composed of artificial neural network and multi objective genetic algorithm to improve the pipe flow hydrodynamic and thermal properties such as pressure drop and heat transfer coefficient for non-Newtonian binary fluids. Physica A: Statistical Mechanics and its Applications, 535, 122409.

    Google Scholar 

  • Yao, X., et al. (2004). Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. Journal of Chemical Information and Computer Sciences, 44(4), 1257–1266.

    CAS  Google Scholar 

  • Yildiz, A. R. (2013). Optimization of multi-pass turning operations using hybrid teaching learning-based approach. The International Journal of Advanced Manufacturing Technology, 66(9–12), 1319–1326.

    Google Scholar 

  • Zendehboudi, S., et al. (2012). Prediction of condensate-to-gas ratio for retrograde gas condensate reservoirs using artificial neural network with particle swarm optimization. Energy & Fuels, 26(6), 3432–3447.

    CAS  Google Scholar 

  • Zendehboudi, S., et al. (2013). Thermodynamic investigation of asphaltene precipitation during primary oil production: Laboratory and smart technique. Industrial & Engineering Chemistry Research, 52(17), 6009–6031.

    CAS  Google Scholar 

  • Zendehboudi, S., et al. (2014). Estimation of breakthrough time for water coning in fractured systems: Experimental study and connectionist modeling. AIChE Journal, 60(5), 1905–1919.

    CAS  Google Scholar 

  • Zhu, Q. (2019). Research on road traffic situation awareness system based on image big data. IEEE Intelligent Systems, 35(1), 18–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Daneshfar or Maryam Naseri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setiawan, R., Daneshfar, R., Rezvanjou, O. et al. Surface tension of binary mixtures containing environmentally friendly ionic liquids: Insights from artificial intelligence. Environ Dev Sustain 23, 17606–17627 (2021). https://doi.org/10.1007/s10668-021-01402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-021-01402-3

Keywords

Navigation