Skip to main content
Log in

Comparative evaluation on the thermal properties and stability of MWCNT nanofluid with conventional surfactants and ionic liquid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Conventional surfactants such as CTAB (cetrimonium bromide), SDS (sodium dodecyl sulphate), SDBS (sodium dodecyl sulphonate) are combined with nanofluids to improve the stability and thermal conductivity of nanofluids. These nanofluids are mainly used for heat transfer applications where heating and cooling are usual courses of action which result in surfactants producing foams and polluting the heat transfer media, affecting the total system performance. Besides, the common surfactant molecules that augment the thermal resistance between the nanoparticles and base fluid also affect the thermophysical properties of the nanofluid. In this paper, [Bmim][Cl] (1-butyl-3-methylimidazolium chloride), a high purity ionic liquid (IL) with higher thermal stability was used to provide a comparative study on the stability and thermal properties with that of the conventional surfactants (CTAB, SDS, SDBS) on multiwalled carbon nanotubes (MWCNT)/propylene glycol (PG) nanofluid. The transient hot-wire based KD2-Pro and zeta potential results demonstrated that the inclusion of ionic liquid improved the thermal conductivity and stability of the formulated nanofluid. However, much like the conventional surfactants, the strong electrostatic repulsive force created by the ionic liquid was found to decrease when the temperature is increased. The outcome demonstrated the most extreme thermal conductivity upgrade of 33.7% at 303 K and maximum dispersion stability of more than one month without any aggregation for the nanofluid containing ionic liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Al2O3 :

Aluminium oxide

Au:

Gold

BmimCl:

1-Butyl-3-methylimidazolium chloride

CTAB:

Cetrimonium bromide

EDX:

Energy-dispersive X-ray

FESEM:

Field emission scanning electron microscope

OD:

Outer diameter of MWCNTs

FTIR:

Fourier transform infrared spectroscope

h :

Heat transfer coefficient (W m2 K1)

IL:

Ionic liquid

INF:

Nanofluid containing ionic liquid

k :

Thermal conductivity (W m2 K1)

LiNO3 :

Lithium nitrate

MWCNT:

Multiwalled carbon nanotubes

PG:

Propylene glycol

S1:

MWCNT + PG + SDS

S2:

MWCNT + PG + SDBS

S3:

MWCNT + PG + CTAB

S4:

MWCNT + PG + IL

SDBS:

Sodium dodecyl benzene sulphonate

SDS:

Sodium dodecyl sulphate

T :

Temperature (K)

mass:

M (gram)

ID:

Inner diameter of MWCNTs

μ :

Dynamic viscosity (kg m1 s1)

ρ :

Density (kg m3)

Ø :

Mass concentration (%)

Cp:

Specific heat capacity (kJ kg1 K1)

nf:

Nanofluid

np:

Nanoparticle

bf:

Base fluid

References

  1. Moradi A, Toghraie D, Isfahani AHM, Hosseinian A. An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media. J Therm Anal Calorim. 2019;137:1797–807. https://doi.org/10.1007/s10973-019-08076-0.

    Article  CAS  Google Scholar 

  2. Ilyas SU, Pendyala R, Narahari M. Experimental investigation of natural convection heat transfer characteristics in MWCNT-thermal oil nanofluid. J Therm Anal Calorim. 2019;135:1197–209. https://doi.org/10.1007/s10973-018-7546-7.

    Article  CAS  Google Scholar 

  3. Mukesh Kumar PC, Chandrasekar M. Heat transfer and friction factor analysis of MWCNT nanofluids in double helically coiled tube heat exchanger. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09444-x.

    Article  Google Scholar 

  4. Das PK, Mallik AK, Ganguly R, Santra AK. Stability and thermophysical measurements of TiO2 (anatase) nanofluids with different surfactants. J Mol Liq. 2018;254:98–107.

    Article  CAS  Google Scholar 

  5. Choi TJ, Jang SP, Kedzierski MA. Effect of surfactants on the stability and solar thermal absorption characteristics of water-based nanofluids with multi-walled carbon nanotubes. Int J Heat Mass Transf. 2018;122:483–90.

    Article  CAS  Google Scholar 

  6. Minea AA, Murshed SMS. A review on development of ionic liquid based nanofluids and their heat transfer behavior. Renew Sustain Energy Rev. 2018;91:584–99.

    Article  CAS  Google Scholar 

  7. Shevelyova MP, Paulechka YU, Kabo GJ, Blokhin AV, Kabo AG, Gubarevich TM. Physicochemical properties of imidazolium-based ionic nanofluids: density, heat capacity, and enthalpy of formation. J Phys Chem C. 2013;117:4782–90. https://doi.org/10.1021/jp3059432.

    Article  CAS  Google Scholar 

  8. de Castro CAN, Langa E, Morais AL, Lopes MLM, Lourenço MJV, Santos FJV, et al. Studies on the density, heat capacity, surface tension and infinite dilution diffusion with the ionic liquids [C4mim][NTf2], [C4mim][dca], [C2mim][EtOSO3] and [Aliquat][dca]. Fluid Phase Equilib. 2010;294:157–79.

    Article  Google Scholar 

  9. Al-Waeli AHA, Chaichan MT, Kazem HA, Sopian K. Evaluation and analysis of nanofluid and surfactant impact on photovoltaic-thermal systems. Case Stud Therm Eng. 2019;13:100392.

    Article  Google Scholar 

  10. Paul TC, Mahamud R, Khan JA. Multiphase modeling approach for ionic liquids (ILs) based nanofluids: improving the performance of heat transfer fluids (HTFs). Appl Therm Eng. 2019;149:165–72.

    Article  CAS  Google Scholar 

  11. Oster K, Hardacre C, Jacquemin J, Ribeiro APC, Elsinawi A. Understanding the heat capacity enhancement in ionic liquid-based nanofluids (ionanofluids). J Mol Liq. 2018;253:326–39.

    Article  CAS  Google Scholar 

  12. Wang B, Wang X, Lou W, Hao J. Ionic liquid-based stable nanofluids containing gold nanoparticles. J Colloid Interface Sci. 2011;362:5–14.

    Article  CAS  Google Scholar 

  13. Liu J, Wang F, Zhang L, Fang X, Zhang Z. Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications. Renew Energy. 2014;63:519–23.

    Article  CAS  Google Scholar 

  14. Xie H, Zhao Z, Zhao J, Gao H. Measurement of thermal conductivity, viscosity and density of ionic liquid [EMIM][DEP]-based nanofluids. Chin J Chem Eng. 2016;24:331–8.

    Article  CAS  Google Scholar 

  15. Luo C, Li Y, Li N, Wang Y, Su Q. Thermophysical properties of lithium nitrate + 1-ethyl-3-methylimidazolium diethylphosphate + water system. J Chem Thermodyn. 2018;126:160–70.

    Article  CAS  Google Scholar 

  16. Zhai Y, Li L, Wang J, Li Z. Evaluation of surfactant on stability and thermal performance of Al2O3-ethylene glycol (EG) nanofluids. Powder Technol. 2019;343:215–24.

    Article  CAS  Google Scholar 

  17. Akhgar A, Toghraie D. An experimental study on the stability and thermal conductivity of water-ethylene glycol/TiO2-MWCNTs hybrid nanofluid: developing a new correlation. Powder Technol. 2018;338:806–18.

    Article  CAS  Google Scholar 

  18. Chen W, Zou C, Li X. An investigation into the thermophysical and optical properties of SiC/ionic liquid nanofluid for direct absorption solar collector. Sol Energy Mater Sol Cells. 2017;163:157–63.

    Article  CAS  Google Scholar 

  19. Sánchez-Coronilla A, Martín EI, Navas J, Aguilar T, Gómez-Villarejo R, Alcántara R, et al. Experimental and theoretical analysis of NiO nanofluids in presence of surfactants. J Mol Liq. 2018;252:211–7.

    Article  Google Scholar 

  20. Gao T, Li C, Zhang Y, Yang M, Jia D, Jin T, et al. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribol Int. 2019;131:51–63.

    Article  CAS  Google Scholar 

  21. Jin J, Li X, Geng J, Jing D. Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface. Phys Chem Chem Phys. 2018;20:15223–35. https://doi.org/10.1039/C8CP01838C.

    Article  CAS  PubMed  Google Scholar 

  22. Albert J, Müller K. A group contribution method for the thermal properties of ionic liquids. Ind Eng Chem Res. 2014;53:17522–6. https://doi.org/10.1021/ie503366p.

    Article  CAS  Google Scholar 

  23. Yunus NM, Abdul Mutalib MI, Man Z, Bustam MA, Murugesan T. Thermophysical properties of 1-alkylpyridinum bis(trifluoromethylsulfonyl)imide ionic liquids. J Chem Thermodyn. 2010;42:491–5.

    Article  CAS  Google Scholar 

  24. Kurnia KA, Quental MV, Santos LMNBF, Freire MG, Coutinho JAP. Mutual solubilities between water and non-aromatic sulfonium-{,} ammonium- and phosphonium-hydrophobic ionic liquids. Phys Chem Chem Phys. 2015;17:4569–77. https://doi.org/10.1039/C4CP05339G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ziyada AK, Wilfred CD, Bustam MA, Man Z, Murugesan T. Thermophysical properties of 1-propyronitrile-3-alkylimidazolium bromide ionic liquids at temperatures from (293.15 to 353.15) K. J Chem Eng Data. 2010;55:3886–90. https://doi.org/10.1021/je901050v.

    Article  CAS  Google Scholar 

  26. Kotov N, Raus V, Dybal J. Non-covalent interactions in bmimCl/co-solvent mixtures: a FTIR spectroscopy and computational study. J Mol Liq. 2019;285:688–96.

    Article  CAS  Google Scholar 

  27. Bakthavatchalam B, Habib K, Saidur R, Shahabuddin S, Saha BB. Influence of solvents on the enhancement of thermophysical properties and stability of MWCNT nanofluid. Nanotechnology. 2020;31:235402.

    Article  CAS  Google Scholar 

  28. Miranda A, Barekar N, McKay BJ. MWCNTs and their use in Al-MMCs for ultra-high thermal conductivity applications: a review. J Alloys Compd. 2019;774:820–40.

    Article  CAS  Google Scholar 

  29. Xian HW, Sidik NAC, Saidur R. Impact of different surfactants and ultrasonication time on the stability and thermophysical properties of hybrid nanofluids. Int Commun Heat Mass Transf. 2020;110:104389.

    Article  CAS  Google Scholar 

  30. Li X, Zeng G, Lei X. The stability, optical properties and solar-thermal conversion performance of SiC–MWCNTs hybrid nanofluids for the direct absorption solar collector (DASC) application. Sol Energy Mater Sol Cells. 2020;206:110323.

    Article  CAS  Google Scholar 

  31. Bakthavatchalam B, Habib K, Saidur R, Saha BB, Irshad K. Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: a review on current and future perspective. J Mol Liq. 2020;305:112787.

    Article  CAS  Google Scholar 

  32. Azarfar S, Movahedirad S, Sarbanha AA, Norouzbeigi R, Beigzadeh B. Low cost and new design of transient hot-wire technique for the thermal conductivity measurement of fluids. Appl Therm Eng. 2016;105:142–50.

    Article  CAS  Google Scholar 

  33. Sezer N, Koç M. Stabilization of the aqueous dispersion of carbon nanotubes using different approaches. Therm Sci Eng Prog. 2018;8:411–7.

    Article  Google Scholar 

  34. Kakavandi A, Akbari M. Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. Int J Heat Mass Transf. 2018;124:742–51.

    Article  CAS  Google Scholar 

  35. Yellapu G, Vishal CVC, Kandoth MP, Saha P, Bojja RR, Gandham S, et al. Functionalized multi-walled carbon nanotubes based Newtonian nano fluids for medium temperature heat transfer applications. Therm Sci Eng Prog. 2019;12:13–23.

    Article  Google Scholar 

  36. Rahimi A, Rahjoo M, Hashemi SS, Sarlak MR, Malekshah MH, Malekshah EH. Combination of dual-MRT lattice Boltzmann method with experimental observations during free convection in enclosure filled with MWCNT–MgO/water hybrid nanofluid. Therm Sci Eng Prog. 2018;5:422–36.

    Article  Google Scholar 

  37. Li X, Chen W, Zou C. An experimental study on β-cyclodextrin modified carbon nanotubes nanofluids for the direct absorption solar collector (DASC): specific heat capacity and photo-thermal conversion performance. Sol Energy Mater Sol Cells. 2020;204:110240.

    Article  CAS  Google Scholar 

  38. Marcos MA, Podolsky NE, Cabaleiro D, Lugo L, Zakharov AO, Postnov VN, et al. MWCNT in PEG-400 nanofluids for thermal applications: a chemical, physical and thermal approach. J Mol Liq. 2019;294:111616.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Universiti Teknologi PETRONAS (UTP) for their financial assistance through YUTP grant (Grant no. 015LC0-118). The authors were also grateful to CORIL (Centre of Research in Ionic Liquids), UTP for their adequate support on analysing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khairul Habib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakthavatchalam, B., Habib, K., Wilfred, C.D. et al. Comparative evaluation on the thermal properties and stability of MWCNT nanofluid with conventional surfactants and ionic liquid. J Therm Anal Calorim 147, 393–408 (2022). https://doi.org/10.1007/s10973-020-10374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10374-x

Keywords

Navigation