Skip to main content

Advertisement

Log in

Water–food–energy–climate nexus and technology productivity: a Nigerian case study of organic leafy vegetable production

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

A Correction to this article was published on 25 November 2020

This article has been updated

Abstract

Low agricultural productivity is a major challenge constraining food production in developing countries. Attempts at addressing the problem have resulted in the development and deployment of agricultural technologies, such as organic farming, to help boost productivity, enhance farmers’ income, and their overall livelihood conditions. The deployment of such productivity-enhancing technologies has mostly overlooked their inexplicable interconnectedness and interdependencies with nexus factors such as climate, water, and energy within the embeddings of a food production system. Through a Nigerian case study approach, this study attempts to bridge this gap by qualitatively investigating how organic leafy vegetable production (OLVP) and its anticipated outcomes can be affected by the interface of water, energy, and climate with food production. This was intended to generate exploratory insights that will help underscore why cross-sectoral linkages should be accounted for when deploying agricultural technology interventions. To achieve this objective, we conducted in-depth interviews and focus group discussions, and field visits to the farms of organic farmers in Ajibode, Ibadan, Nigeria. Results indicate that the productivity of OLVP was severely constrained by highly contextual nexus factors such as energy deficit, the water source for irrigation, changes in rainfall patterns, and temperature effect of harmattan. We concluded that location-specific nexus elements that intersect with food production should be accounted for when introducing productivity-enhancing technologies. Otherwise, the opportunity for improved agricultural productivity may remain elusive. Finally, our study shows that the nexus approach can help reveal intricately linked cross-sectoral factors that can constrain the performance of agricultural technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adapted from United Nations University (UNU) 2013)

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

References

  • Adebiyi, J. A., Olabisi, L. S., Richardson, R., Liverpool-Tasie, L. S. O., & Delate, K. (2020). Drivers and constraints to the adoption of organic leafy vegetable production in Nigeria: A livelihood approach. Sustainability, 12(1), 96.

    Google Scholar 

  • Adebiyi, J., Olabisi, L. S., & Snapp, S. (2016). Understanding perennial wheat adoption as a transformative technology: Evidence from the literature and farmers. Renewable Agriculture and Food Systems, 31(2), 101–110.

    Google Scholar 

  • Adegbile, A.O. (2014). Vulnerability of farmers to flood disaster in Akinyele Local Government Area, Oyo State of Nigeria. Unpublished master’s Thesis, Université de Lomé Togo.

  • Adejuwon, J. O. (2006). Food crop production in Nigeria. II. Potential effects of climate change. Climate Research, 32(3), 229–245. https://doi.org/10.3354/cr032229.

    Article  Google Scholar 

  • Adejuwon, J. O., & Odekunle, T. O. (2006). Variability and the severity of the “little dry season” in southwestern Nigeria. Journal of Climate, 19(3), 483–493. https://doi.org/10.1175/JCLI3642.1.

    Article  Google Scholar 

  • Adetunji, M. A. M., & Oyeleye, O. I. (2018). Assessment and control measures of flood risk in Ajibode area of Ibadan, Oyo state, Nigeria. International Journal of Physical and Human Geography, 6(1), 1–16.

    Google Scholar 

  • Adewole, I. F., Agbola, S. B., & Kasim, O. F. (2015). Building resilience to climate change impacts after the 2011 flood disaster at the University of Ibadan, Nigeria. Environment and Urbanization, 27(1), 199–216. https://doi.org/10.1177/0956247814547679.

    Article  Google Scholar 

  • African Center for Economic Transformation (ACET). (2017). African Transformation Report 2017: Agriculture Powering Transformation. Washington, DC: ACET, United States.

    Google Scholar 

  • Akanle, O., Adejare, G. S., & Oloyede, M. O. (2015). Ethnography of flooding in Ibadan Metropolis, Nigeria: Agencies of flooding in developing countries. Ibadan Journal of Sociology, 2, 5–31.

    Google Scholar 

  • Albrecht, T. R., Crootof, A., & Scott, C. A. (2018). The water–energy–food nexus: A systematic review of methods for nexus assessment. Environmental Research Letters, 13(4), 043002.

    Google Scholar 

  • Andersson, J. A., & D’Souza, S. (2014). From adoption claims to understanding farmers and contexts: A literature review of Conservation Agriculture (CA) adoption among smallholder farmers in southern Africa. Agriculture, Ecosystems & Environment, 187, 116–132.

    Google Scholar 

  • Ayanlade, A., Radeny, M., & Morton, J. F. (2017). Comparing smallholder farmers’ perception of climate change with meteorological data: A case study from southwestern Nigeria. Weather and Climate Extremes, 15, 24–33. https://doi.org/10.1016/j.wace.2016.12.001.

    Article  Google Scholar 

  • Bakewell-Stone, P., Lieblein, G., & Francis, C. (2008). Potentials for organic agriculture to sustain livelihoods in Tanzania. International Journal of Agricultural Sustainability, 6(1), 22–36. https://doi.org/10.3763/ijas.2007.0266.

    Article  Google Scholar 

  • Banerjee, S. G., Malik, K., Tipping, A., Besnard, J., & Nash, J. (2017). Double dividend: Power and agriculture nexus in Sub-Saharan Africa. Washington, DC: World Bank Group.

    Google Scholar 

  • Bennett, M., & Franzel, S. (2013). Can organic and resource-conserving agriculture improve livelihoods? A synthesis. International Journal of Agricultural Sustainability, 11(3), 193. https://doi.org/10.1080/14735903.2012.724925.

    Article  Google Scholar 

  • Bhattacharyya, S., Bugatti, M. N., & Bauer, M. H. (2015). A bottom-up approach to the nexus of energy, food and water security in the Economic Community of West African States (ECOWAS) region. Nexus Network Think Piece Series 215.

  • Binbol, N. L., Adebayo, A. A., & Kwon-Ndung, E. H. (2006). Influence of climatic factors on the growth and yield of sugar cane at Numan, Nigeria. Climate Research, 32(3), 247–252.

    Google Scholar 

  • Burney, J. A., Naylor, R. L., & Postel, S. L. (2013). The case for distributed irrigation as a development priority in sub-Saharan Africa. Proceedings of the National Academy of Sciences, 110(31), 12513–12517.

    CAS  Google Scholar 

  • Chirisa, I., & Bandauko, E. (2015). African cities and the water–food–climate–energy nexus: An agenda for sustainability and resilience at a local level. Urban Forum, 26(4), 391–404.

    Google Scholar 

  • de Fraiture, C., & Giordano, M. (2014). Small private irrigation: A thriving but overlooked sector. Agricultural Water Management, 131, 167–174. https://doi.org/10.1016/j.agwat.2013.07.005.

    Article  Google Scholar 

  • Ding, T., Liang, L., Zhou, K., Yang, M., & Wei, Y. (2020). Water–energy nexus: The origin, development and prospect. Ecological Modelling, 419, 108943.

    Google Scholar 

  • Drews, M., Mikkelsen, P. S., Bauer-Gottwein, P., Vezzaro, L., Davidsen, C., Madsen, H., Christiansen, L. E., & Larsen, M. A. D. (2016). Methodologies for managing the Energy–Water–Food nexus at different scales. In L. Sønderberg Petersen, & H. Hvidtfeldt Larsen (Eds.), DTU International Energy Report 2016: The energy-water-food nexus - from local to global aspects (pp. 73–82). Kgs. Lyngby: Technical University of Denmark.

  • Egbinola, C. N., Olaniran, H. D., & Amanambu, A. C. (2017). Flood management in cities of developing countries: The example of Ibadan, Nigeria. Journal of Flood Risk Management, 10(4), 546–554.

    Google Scholar 

  • El-Gafy, I. (2017). Water–food–energy nexus index: analysis of water–energy–food nexus of crop’s production system applying the indicators approach. Applied Water Science, 7(6), 2857–2868.

    Google Scholar 

  • Eyhorn, F., Mäder, P., & Ramakrishnan, M. (2005). The impact of organic cotton farming on the livelihoods of smallholders. Evidence from the Maikaal bioRe project in Central India. Research Report. Forschungsinstitut für biologischen Landbau (FiBL) CH-Frick.

  • FAO. (2014). The water–energy–food nexus. A new approach in support of food security and sustainable agriculture. Rome: FAO.

    Google Scholar 

  • Field, C. B., & Michalak, A. M. (2015). Water, climate, energy, food: Inseparable & indispensable. Daedalus, 144(3), 7–17.

    Google Scholar 

  • Finley, J. W., & Seiber, J. N. (2014). The nexus of food, energy, and water. Journal of Agricultural and Food Chemistry, 62(27), 6255–6262. https://doi.org/10.1021/jf501496r.

    Article  CAS  Google Scholar 

  • Flammini, A., Puri, M., Pluschke, L., & Dubois, O. (2017). Walking the nexus talk: Assessing the water–energy–food nexus in the context of the sustainable energy for all initiative. Rome: FAO.

    Google Scholar 

  • Folayan, J. A. (2013). Socio-economic analysis of Fadama farmers in Akure South Local Government Area of Ondo State, Nigeria. American Journal of Humanities and Social Sciences, 1(1), 10–17. https://doi.org/10.11634/232907811604269.

    Article  Google Scholar 

  • Fonta, W. M., Kedir, A. M., Bossa, A. Y., Greenough, K. M., Sylla, B. M., & Ayuk, E. T. (2018). A Ricardian valuation of the impact of climate change on Nigerian Cocoa production: Insight for adaptation policy. International Journal of Climate Change Strategies and Management, 10(5), 689–710. https://doi.org/10.1108/IJCCSM-05-2016-0074.

    Article  Google Scholar 

  • Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., et al. (2015). The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Scientific Data, 2, 150066.

    Google Scholar 

  • Goyol, S., & Pathirage, C. (2018). Farmers perceptions of climate change related events in Shendam and Riyom, Nigeria. Economies, 6(4), 70. https://doi.org/10.3390/economies6040070.

    Article  Google Scholar 

  • Hailemariam, W. G., Silalertruksa, T., Gheewala, S. H., & Jakrawatana, N. (2019). Water–energy–food nexus of sugarcane production in Ethiopia. Environmental Engineering Science, 36(7), 798–807.

    CAS  Google Scholar 

  • Han, D., Yu, D., & Cao, Q. (2020). Assessment on the features of coupling interaction of the food–energy–water nexus in China. Journal of Cleaner Production, 249, 119379.

    Google Scholar 

  • Howarth, C., & Monasterolo, I. (2016). Understanding barriers to decision making in the UK energy–food–water nexus: The added value of interdisciplinary approaches. Environmental Science & Policy, 61, 53–60. https://doi.org/10.1016/j.envsci.2016.03.014.

    Article  Google Scholar 

  • Iiyama, M., Neufeldt, H., Njenga, M., Derero, A., Ndegwa, G. M., Mukuralinda, A., et al. (2017). Conceptual analysis: The charcoal-agriculture nexus to understand the socio-ecological contexts underlying varied sustainability outcomes in African landscapes. Frontiers in Environmental Science, 5, 31. https://doi.org/10.3389/fenvs.2017.00031.

    Article  Google Scholar 

  • Issaka, Y. B., Antwi, M., & Tawia, G. (2016). A comparative analysis of productivity among organic and non-organic farms in the West Mamprusi District of Ghana. Agriculture, 6(2), 13.

    Google Scholar 

  • Jerneck, A., & Olsson, L. (2013). More than trees! Understanding the agroforestry adoption gap in subsistence agriculture: Insights from narrative walks in Kenya. Journal of Rural Studies, 32, 114–125. https://doi.org/10.1016/j.jrurstud.2013.04.004.

    Article  Google Scholar 

  • Kangalawe, R. Y., Mung’ong’o, C. G., Mwakaje, A. G., Kalumanga, E., & Yanda, P. Z. (2017). Climate change and variability impacts on agricultural production and livelihood systems in Western Tanzania. Climate and Development, 9(3), 202–216. https://doi.org/10.1080/17565529.2016.1146119.

    Article  Google Scholar 

  • Kirchmann, H., Kätterer, T., Bergström, L., Börjesson, G., & Bolinder, M. A. (2016). Flaws and criteria for design and evaluation of comparative organic and conventional cropping systems. Field Crops Research, 186, 99–106.

    Google Scholar 

  • Knapp, S., & van der Heijden, M. G. (2018). A global meta-analysis of yield stability in organic and conservation agriculture. Nature Communications, 9(1), 1–9.

    CAS  Google Scholar 

  • Kotir, J. H. (2011). Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environment, Development and Sustainability, 13(3), 587–605.

    Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263. https://doi.org/10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  • Kummu, M., Gerten, D., Heinke, J., Konzmann, M., & Varis, O. (2014). Climate-driven interannual variability of water scarcity in food production potential: A global analysis. Hydrology and Earth System Sciences, 18(2), 447–461. https://doi.org/10.5194/hess-18-447-2014.

    Article  Google Scholar 

  • Kupika, O. L., Gandiwa, E., & Nhamo, G. (2019). Green economy initiatives in the face of climate change: Experiences from the Middle Zambezi Biosphere Reserve, Zimbabwe. Environment, Development and Sustainability, 21(5), 2507–2533.

    Google Scholar 

  • Laspidou, C. S., Kofinas, D. T., Mellios, N. K., & Witmer, M. (2018). Modelling the water–energy–food–land use-climate nexus: The nexus tree approach. Multidisciplinary Digital Publishing Institute Proceedings, 2(11), 617. https://doi.org/10.3390/proceedings2110617.

    Article  Google Scholar 

  • Lotter, D. W., Seidel, R., & Liebhardt, W. (2003). The performance of organic and conventional cropping systems in an extreme climate year. American Journal of Alternative Agriculture, 18(3), 146–154. https://doi.org/10.1079/AJAA200345.

    Article  Google Scholar 

  • Mateos, L., dos Santos Almeida, A. C., Frizzone, J. A., & Lima, S. C. R. V. (2018). Performance assessment of smallholder irrigation based on an energy–water–yield nexus approach. Agricultural Water Management, 206, 176–186. https://doi.org/10.1016/j.agwat.2018.05.012.

    Article  Google Scholar 

  • Momin, K. N. (1995). Recent discovery of prehistoric sites in the Ajibode area of Ibadan, Nigeria: A preliminary report. Nyame Akuma, 44, 38–42.

    Google Scholar 

  • Moser, C. M., & Barrett, C. B. (2003). The disappointing adoption dynamics of a yield-increasing, low external-input technology: The case of SRI in Madagascar. Agricultural Systems, 76(3), 1085–1100.

    Google Scholar 

  • Mpandeli, S., Naidoo, D., Mabhaudhi, T., Nhemachena, C., Nhamo, L., Liphadzi, S., et al. (2018). Climate change adaptation through the water–energy–food nexus in southern Africa. International Journal of Environmental Research and Public Health, 15(10), 2306. https://doi.org/10.3390/ijerph15102306.

    Article  Google Scholar 

  • Mubiru, D. N., Radeny, M., Kyazze, F. B., Zziwa, A., Lwasa, J., Kinyangi, J., et al. (2018). Climate trends, risks and coping strategies in smallholder farming systems in Uganda. Climate Risk Management, 22, 4–21. https://doi.org/10.1016/j.crm.2018.08.004.

    Article  Google Scholar 

  • Mukherji, A. (2007). The energy-irrigation nexus and its impact on groundwater markets in eastern Indo-Gangetic basin: Evidence from West Bengal, India. Energy Policy, 35(12), 6413–6430.

    Google Scholar 

  • Mukuve, F. M., & Fenner, R. A. (2015). The influence of water, land, energy and soil-nutrient resource interactions on the food system in Uganda. Food Policy, 51, 24–37. https://doi.org/10.1016/j.foodpol.2014.12.001.

    Article  Google Scholar 

  • Musa, S. D., & Shabu, T. (2019). Using geographic information system to evaluate land use and land cover affected by flooding in Adamawa State, Nigeria. Jàmbá: Journal of Disaster Risk Studies, 11(1), 1–11. https://doi.org/10.4102/jamba.v11i1.494.

    Article  Google Scholar 

  • Nielsen, T., Schünemann, F., McNulty, E., Zeller, M., Nkonya, E., Kato, E., Meyer, S., Anderson, W., Zhu, T., Queface, A. & Mapemba, L. (2015). The food–energy–water security nexus: Definitions, policies, and methods in an application to Malawi and Mozambique. IFPRI Discussion Paper 1480.

  • Nigussie, L., Lefore, N., Schmitter, P., & Nicol, A. (2017). Gender and water technologies: Water lifting for irrigation and multiple purposes in Ethiopia. Nairobi: International Livestock Research Institute (ILRI).

    Google Scholar 

  • Ogolo, E. O., & Adeyemi, B. (2009). Variations and trends of some meteorological parameters at Ibadan, Nigeria. The Pacific Journal of Science and Technology, 10(2), 981–987.

    Google Scholar 

  • Ogunjimi, L. A. O., & Adekalu, K. O. (2002). Problems and constraints of small-scale irrigation (Fadama) in Nigeria. Food Reviews International, 18(4), 295–304. https://doi.org/10.1081/FRI-120016207.

    Article  Google Scholar 

  • Oguntunde, P. G., Abiodun, B. J., Olukunle, O. J., & Olufayo, A. A. (2012). Trends and variability in pan evaporation and other climatic variables at Ibadan, Nigeria, 1973–2008. Meteorological Applications, 19(4), 464–472. https://doi.org/10.1002/met.281.

    Article  Google Scholar 

  • Olusola, A. O., & Fashae, O. (2017). Stream energy distribution below Eleyele Dam in southwestern Nigeria. Singapore Journal of Tropical Geography, 38(3), 402–413.

    Google Scholar 

  • Onyima, B. (2013). Domestic debris management and community health security in Ibadan, Nigeria. The Nigerian Journal of Sociology and Anthropology, 11, 101–116. https://doi.org/10.2139/ssrn.2466912.

    Article  Google Scholar 

  • Oshunsanya, S. O., & Adeniran, T. O. (2014). Water quality and crop contamination in peri-urban agriculture. Agricultura Tropica et Subtropica, 47(3), 94–105. https://doi.org/10.2478/ats-2014-0013.

    Article  Google Scholar 

  • Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. BioScience, 55(7), 573–582. https://doi.org/10.1641/0006-3568(2005)055%5b0573:eeaeco%5d2.0.co;2.

    Article  Google Scholar 

  • Porkka, M., Gerten, D., Schaphoff, S., Siebert, S., & Kummu, M. (2016). Causes and trends of water scarcity in food production. Environmental Research Letters, 11(1), 015001. https://doi.org/10.1088/1748-9326/11/1/015001.

    Article  Google Scholar 

  • Rasul, G., & Sharma, B. (2016). The nexus approach to water–energy–food security: An option for adaptation to climate change. Climate Policy, 16(6), 682–702. https://doi.org/10.1080/14693062.2015.1029865.

    Article  Google Scholar 

  • Reddy, V. R., Chiranjeevi, T., & Syme, G. (2020). Inclusive sustainable intensification of agriculture in West Bengal, India: Policy and institutional approaches. International Journal of Agricultural Sustainability, 18(1), 70–83.

    Google Scholar 

  • Roudier, P., Sultan, B., Quirion, P., & Berg, A. (2011). The impact of future climate change on West African crop yields: What does the recent literature say? Global Environmental Change, 21(3), 1073–1083. https://doi.org/10.1016/j.gloenvcha.2011.04.007.

    Article  Google Scholar 

  • Rundgren, G., & Parrott, N. (2005). Organic agriculture and food security. Bonn: IFOAM.

    Google Scholar 

  • Sandford, R. W., & O’Riordan, J. (2015). The climate nexus: Water, food, energy and biodiversity. Victoria: Rocky Mountain Books Ltd.

    Google Scholar 

  • Sarkar, A., & Das, A. (2014). Groundwater irrigation-electricity-crop diversification Nexus in Punjab: Trends, turning points, and Policy Initiatives. Economic and Political Weekly, 49, 64–73.

    Google Scholar 

  • Seufert, V., Ramankutty, N., & Foley, J. A. (2012). Comparing the yields of organic and conventional agriculture. Nature, 485(7397), 229.

    CAS  Google Scholar 

  • Seufert, V., & Ramankutty, N. (2017). Many shades of gray—The context-dependent performance of organic agriculture. Science Advances, 3(3), e1602638.

    Google Scholar 

  • Sims, R., Flammini, A., Santos, N., Dias Pereira, L., Carita, A., Bracco, S., et al. (2017). Adoption of Climate Technologies in the Agrifood Sector. Methodology. Rome: FAO Investment Centre, FAO.

    Google Scholar 

  • Sinha, S., Sharma, B. R., & Scott, C. A. (2006). Understanding and managing the water-energy nexus: Moving beyond the energy debate. In B. R. Sharma, K. G. Villholth, & K. D. Sharma (Eds.), Groundwater research and management: integrating science into management decisions (pp. 242–257). Colombo, Sri Lanka: International Water Management Institute.

    Google Scholar 

  • Staupe-Delgado, R. (2019). The water-energy-food-environmental security nexus: Moving the debate forward. Environment, Development and Sustainability, 52, 1–17.

    Google Scholar 

  • Tayleur, C., & Phalan, B. (2016). Organic farming and deforestation. Nature Plants, 2(7), 16098.

    Google Scholar 

  • Theis, S., Lefore, N., Meinzen-Dick, R., & Bryan, E. (2017). What happens after technology adoption? Gendered aspects of small-scale irrigation technologies in Ethiopia, Ghana, and Tanzania. IFPRI Discussion Paper 01672.

  • Therond, O., Duru, M., Roger-Estrade, J., & Richard, G. (2017). A new analytical framework of farming system and agriculture model diversities. A review. Agronomy for Sustainable Development, 37(3), 21. https://doi.org/10.1007/s13593-017-0429-7.

    Article  Google Scholar 

  • United Nations University (UNU). (2013). Water security and the global water agenda. A UN-water analytical brief. Shibuya: United Nations University.

    Google Scholar 

  • White, D. D., Jones, J. L., Maciejewski, R., Aggarwal, R., & Mascaro, G. (2017). Stakeholder analysis for the food-energy-water nexus in Phoenix, Arizona: Implications for nexus governance. Sustainability, 9(12), 2204. https://doi.org/10.3390/su9122204.

    Article  Google Scholar 

  • Winston, E., Op de Laak, J., Marsh, T., Lempke, H., & Chapman, K. (2005). Arabica coffee manual for Lao-PDR. Rome: FAO.

    Google Scholar 

  • Zhang, C., Chen, X., Li, Y., Ding, W., & Fu, G. (2018). Water–energy–food nexus: Concepts, questions and methodologies. Journal of Cleaner Production, 195, 625–639.

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by Environmental Science and Policy Program (ESPP) and the Center for Gender in Global Context (GenCen), at Michigan State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelili Adegboyega Adebiyi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebiyi, J.A., Olabisi, L.S., Liu, L. et al. Water–food–energy–climate nexus and technology productivity: a Nigerian case study of organic leafy vegetable production. Environ Dev Sustain 23, 6128–6147 (2021). https://doi.org/10.1007/s10668-020-00865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-020-00865-0

Keywords

Navigation