Effect of shadow removal by gamma correction in SMQT algorithm in environmental application

Abstract

Environmental data can be achieved from remote sensing. Shadows are main problems in achieving environmental data by remote sensing. In this research, an algorithm is proposed for preparing environmental data from shadow-covered objects. The proposed algorithm provides some information about digital number (DN) of shadow-covered objects by reducing the shadow effect. The successive mean quantization transform (SMQT) algorithm, gamma correction and combination of images form the basis of the proposed algorithm. SMQT algorithm eliminates gain and bias features by indicating the data structure. The data structure remains unchanged, and the differences between terrains are highlighted by compressing the dynamic range and stretching the histogram of the image in parts with different terrains of same DN. The output of the SMQT algorithm is a gray image. A new image is obtained by combining this image with the original image through HSV color space. In the second step, gamma correction is applied to the entire image according to brightness and contrast. But the gamma correction rate is not the same in all parts of an image. As a result, gamma correction should be done locally. However, local gamma correction and the use of a kernel of a specific dimension increase computation time. In addition, if there is a noise in the image, it will cause a significant deviation in the correction. To solve this problem, the output of SMQT algorithm is combined with the image obtained from gamma correction. Shadows in the input image cause the image histogram to be compressed in areas near zero. After performing the process in the study, the histogram was stretched and the maximum histogram reached from 190 to 250.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Adeline, K. R. M., Chen, M., Briottet, X., Pang, S. K., & Paparoditis, N. (2013). Shadow detection in very high spatial resolution aerial images. ISPRS Journal of Photogrammetry and Remote Sensing, 80, 21–38. https://doi.org/10.1016/j.isprsjprs.2013.02.003.

    Article  Google Scholar 

  2. Anoopa, S., Dhanya, V., & Kizhakkethottam, J. J. (2016). Shadow detection and removal using Tri-Class based thresholding and shadow matting technique. Procedia Technology, 24, 1358–1365.

    Article  Google Scholar 

  3. Asadi, P., Amini Rad, H., & Qaderi, F. (2019). Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-019-06051-8.

    Article  Google Scholar 

  4. Azevedo, S. C., Silva, E. A., & Pedrosa, M. M. (2015). Shadow detection improvement using spectral indices and morphological operators in urban areas in high resolution image. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 7(3), 11–15. https://doi.org/10.5194/isprsarchives-XL-7-W3-587-2015.

    Article  Google Scholar 

  5. Azizpour, F., & Qaderi, F. (2019). Optimization, modeling and uncertainty investigation of phenolic wastewater treatment by photocatalytic process in cascade reactor. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-019-00480-8.

    Article  Google Scholar 

  6. Babanezhad, E., Amini Rad, H., Hosseini Karimi, S. S., & Qaderi, F. (2017). Investigating nitrogen removal using simultaneous nitrification–denitrification in transferring wastewater through collection networks with small-diameter pipes. Water Practice and Technology, 12, 396–405. https://doi.org/10.2166/wpt.2017.044.

    Article  Google Scholar 

  7. Babanezhad, E., Qaderi, F., & Salehi Ziri, M. (2018). Spatial modeling of groundwater quality based on using Schoeller diagram in GIS base: A case study of Khorramabad, Iran. Environmental Earth Sciences, 77, 339. https://doi.org/10.1007/s12665-018-7541-0.

    Article  Google Scholar 

  8. Barrow, H. G, & Tenenbaum, J. M. (1978). Recovering intrinsic scene characteristics from images. SRI international computer vision systems.

  9. Cho, S. B. (2014). Lens correction and gamma correction. Berlin: Springer. https://doi.org/10.1007/978-94-017-9075-8_2.

    Book  Google Scholar 

  10. Ebrahimi Ghadi, M., Qaderi, F., & Babanezhad, E. (2018). Prediction of mortality resulted from NO2 concentration in Tehran by Air Q + software and artificial neural network. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-018-1818-4.

    Article  Google Scholar 

  11. Faghih Nasiri, E., Yousefi Kebria, D., & Qaderi, F. (2018). An experimental study on the simultaneous phenol and chromium removal from water using titanium dioxide photocatalyst. Civil Engineering Journal, 4(3), 585–593. https://doi.org/10.28991/cej-0309117.

    Article  Google Scholar 

  12. Faghih Nasiri, E., Yousefi Kebria, D., & Qaderi, F. (2019). The degradation of phenol in water solution by immobilized TiO2 photocatalysis. Journal of Civil and Environmental Engineering (University of Tabriz; ISSN 2008-7918), 48(93), 43–49.

    Google Scholar 

  13. Finlayson, G. D., Drew, M. S., & Cheng, Lu. (2009). Entropy minimization for shadow removal. International Journal of Computer Vision, 86(1), 35–57.

    Article  Google Scholar 

  14. Finlayson, G. D., & Hordley, S. D. (2006). The removal of shadows from images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(1), 59–68.

    Article  Google Scholar 

  15. Finlayson, G. D, Hordley, S. D, & Drew, M. S. (2002). Removing shadows from images. In ECCV ‘02 proceedings of the 7th European conference on computer vision-part IV (pp. 823–836).

  16. Ghilani, C. D. (2010). Adjustment computations: spatial data analysis (5th ed.). London: Wiley. ISBN 978-1-119-38598-1.

    Google Scholar 

  17. Gonzalez, R. C., Woods, R. E, & Eddins, S. L. (2009). Digital image processing using MATLAB. Gatesmark Publishing.

  18. Huang, W., & Bu, M. (2014). Detecting shadows in high-resolution remote-sensing images of urban areas using spectral and spatial features. International Journal of Remote Sensing. https://doi.org/10.1080/01431161.2015.1113329.

    Article  Google Scholar 

  19. Huang, J., Xie, W., & Tang, L. (2004) Detection and compensation for shadows in colored urban aerial images. In Intelligent control and automation, fifth world congress on intelligent control and automation (IEEE Cat. No. 04EX788) (pp. 3098–3100).

  20. Khalegh, R., & Qaderi, F. (2019). Optimization of the effect of nanoparticle morphologies on the cost of dye wastewater treatment via ultrasonic/photocatalytic hybrid process. Applied Nanoscience. https://doi.org/10.1007/s13204-019-00984-9.

    Article  Google Scholar 

  21. Nilsson, M. (2012). SMQT-based tone mapping operators for high dynamic range images. In 8th International conference on computer vision theory and applications.

  22. Nilsson, M., Dahl, M., & Claesson, I. (2005) The successive mean quantization. In IEEE international conference on acoustics, speech, and signal processing.

  23. Oakley, J. P. (2009). Mitigation of atmospheric contrast degradation via image enhancement IEEE International Workshop on Imaging Systems and Techniques, IST 2009. Hong Kong. https://doi.org/10.1109/IST.2009.5071606.

    Article  Google Scholar 

  24. Pajoum Shariati, F., Qaderi, F., & Haeri, H. (2018). Using moving bed biofilm reactor including kaldness media in treatment of wastewater containing light component petroleum. Journal of Civil and Environmental Engineering (University of Tabriz; ISSN 2008-7918), 1–19.

  25. Qaderi, F., Asadi, P., Tamadoni, A., & Azizi, M. (2018a). Evaluation of sustainability of development in zone 22 of Tehran by ecological footprint method. Geography and Development Iranian Journal, 16(50), 231–245. https://doi.org/10.22111/gdij.2018.3575.

    Article  Google Scholar 

  26. Qaderi, F., & Ayati, B. (2014). Comparison of MBBR and SBAR in treating toxic formaldehyde wastewater. Journal of Civil and Environmental Engineering, 44(74), 99–106.

    Google Scholar 

  27. Qaderi, F., Ayati, B., Ganjidoost, H., & Sarraf Mamoori, R. (2015a). Treatment of wastewater containing acid orange 7 using ozonation process and determination of the intermediate by-products. Journal of Water and Wastewater, 26(2), 13–23.

    Google Scholar 

  28. Qaderi, F., Ayati, B., & Ganjidoust, H. (2011). Role of moving bed biofilm reactor and sequencing batch reactor in biological degradation of formaldehyde wastewater. Journal of Environmental Health Science and Engineering, 8, 295–306.

    CAS  Google Scholar 

  29. Qaderi, F., Ayati, B., & Ganjidoust, H. (2012). Comparing the efficiency of MBBR and SBR in treating wastewater containing formaldehyde. Amirkabir Journal of Civil Engineering, 43(2), 43–50.

    Google Scholar 

  30. Qaderi, F., Ayati, B., Ganjidoust, H., & Sarraf-Mamoory, R. (2015b). Investigation of kinetic and intermediate products of acid orange 7 removal by hybrid ozonation/photocatalytic processes. Modares Journal of Civil Engineering, 15(2), 79–89.

    Google Scholar 

  31. Qaderi, F., & Babanezhad, E. (2017). Prediction of the groundwater remediation costs for drinking use based on quality of water resource, using artificial neural network. Journal of Cleaner Production, 161, 840–849. https://doi.org/10.1016/j.jclepro.2017.05.187.

    CAS  Article  Google Scholar 

  32. Qaderi, F., Sayahzadeh, A. H., & Azizi, M. (2018b). Efficiency optimization of petroleum wastewater treatment by using of serial moving bed biofilm reactors. Journal of Cleaner Production, 192, 665–677. https://doi.org/10.1016/j.jclepro.2018.04.257.

    CAS  Article  Google Scholar 

  33. Qaderi, F., Sayahzadeh, A. H., Azizpour, F., & Vosughi, P. (2018c). Efficiency modeling of serial stabilization ponds in treatment of phenolic wastewater by response surface methodology. International Journal of Environmental Science and Technology, 16(8), 4193–4202. https://doi.org/10.1007/s13762-018-1816-6.

    CAS  Article  Google Scholar 

  34. Qaderi, F., Sayahzadeh, A. H., & Ebrahimi Ghadi, M. (2019). Optimization of effective environmental parameters on Astrazon Red GTL removal by dominant species Bacillus and Aeromonas: in a concurrent culture study. Journal of Molecular and Cellular Research, 32(1), 1–15.

    Google Scholar 

  35. Ramesh, P. S., & Letitia, S. A. (2017). Novel approach for shadows detection and shadows removal from high-resolution satellite image. African Journal of Basic & Applied Sciences, 9(4), 243–250.

    Google Scholar 

  36. Rani, S., & Kumar, M. (2014). Contrast enhancement using improved adaptive gamma correction with weighting distribution technique. International Journal of Computer Applications. https://doi.org/10.5120/17735-8849.

    Article  Google Scholar 

  37. Salih, N. M., Kadhim, M., Mourshed, M., & Bray, M. T. (2015). Shadow detection from very high resolution satellite image using grabcut segmentation and ratio-band algorithms. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. https://doi.org/10.5194/isprsarchives-XL-3-W2-95-2015.

    Article  Google Scholar 

  38. Salvador, E., Cavallaro, A., & Ebrahimi, T. (2001). Shadow identification and classification using invariant color models. In IEEE international conference on, acoustics, speech, and signal processing (ICASSP’01) (pp. 1545–1548).

  39. Sasi, R. K., & Govindan, V. K. (2005). Shadow detection and removal from real images: State of art. In Proceedings. (ICASSP ‘05). IEEE international conference on acoustics, speech, and signal processing.

  40. Sh, Yeng Q., Tan, K. H., & Ahuja, Narendra. (2012). Shadow removal using bilateral filtering. IEEE Transactions on Image Processing, 21(10), 4361–4368.

    Article  Google Scholar 

  41. Shahtahmasebi, A. R., Yang, N., Wing, K., Moore, N., & Zangquan, Sh. (2013). Review of shadow detection and De-shadowing methods in remote sensing. Chinese Geographical Science, 23(4), 403–442.

    Article  Google Scholar 

  42. Sheikholeslami, Z., Yousefi Kebria, D., & Qaderi, F. (2018). Nanoparticle for degradation of BTEX in produced water: An experimental procedure. Journal of Molecular Liquids, 246, 476–482. https://doi.org/10.1016/j.molliq.2018.05.096.

    CAS  Article  Google Scholar 

  43. Sheikholeslami, Z., Yousefi Kebria, D., & Qaderi, F. (2019). Investigation of photocatalytic degradation of BTEX in produced water using γ-Fe2O3 nanoparticle. Journal of Thermal Analysis and Calorimetry. https://doi.org/10.1007/s10973-018-7381-x.

    Article  Google Scholar 

  44. Singh, K. K. (2012). Shadow detection and removal from remote sensing images using NDI and morphological operators. International Journal of Computer Applications. https://doi.org/10.5120/5731-7805.

    Article  Google Scholar 

  45. Taghizadeh, M., Yousefi, Kebria D., & Qaderi, F. (2019). Benzene and toluene removal from saline water with coupled membrane process and nanophotocatalyst. Journal of Petroleum Research, 27(10300695), 168–179.

    Google Scholar 

  46. Tamadoni, A., & Qaderi, F. (2019). Optimization of soil remediation by ozonation for PAHs contaminated soils. Ozone Science and Engineering, 41(5), 454–472. https://doi.org/10.1080/01919512.2019.1615865.

    CAS  Article  Google Scholar 

  47. Tavakoli Moghadam, M., & Qaderi, F. (2019). Modeling of petroleum wastewater treatment by Fe/Zn nanoparticles using the response surface methodology and enhancing the efficiency by scavenger. Results in Physics, 15, 102566–102576. https://doi.org/10.1016/j.rinp.2019.102566.

    Article  Google Scholar 

  48. Tosusu, B. (2010). Human identification for the management of memory impaired patients in elder care facilities. Massey university, school of engineering and advance technology.

  49. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612. https://doi.org/10.1109/TIP.2003.819861.

    Article  Google Scholar 

  50. Yavari, S. M., & Qaderi, F. (2018). Determination of thermal pollution of water resources caused by Neka power plant through processing satellite imagery. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-018-0272-2.

    Article  Google Scholar 

  51. Zhu, Xia, Chen, Renwen, Xia, Huakang, & Zhang, Piaoyan. (2015). Shadow removal based on YCbCr color space. Neurocomputing, 151, 252–258. https://doi.org/10.1016/j.neucom.2014.09.045.

    Article  Google Scholar 

  52. Zhu, Sh, Guo, Zh, & Ma, L. (2012). Shadow removal with background difference method based on shadow position and edges attributes. EURASIP Journal on Image and Video Processing. https://doi.org/10.1186/16875281-2012-22.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Amiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yavari, S.M., Amiri, H. Effect of shadow removal by gamma correction in SMQT algorithm in environmental application. Environ Dev Sustain 22, 7057–7074 (2020). https://doi.org/10.1007/s10668-019-00528-9

Download citation

Keywords

  • Shadow
  • Gamma correction
  • Remote sensing
  • SMQT
  • Environmental