Skip to main content

Advertisement

Log in

Assessment of dam water quality for irrigation in the northeast of catchment Cheliff-Zahrez, Central Algeria

  • Original paper
  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The aim of the present study was to appraise surface water quality for irrigation purposes. This research work concerns seven dams’ water from higher and lower part of Cheliff agricultural area located in northeast to the larger catchment Cheliff-Zahrez, central Algeria. The following dams are investigated, namely Deurdeur, Ghrib, Harreza, Oued Fodda, Oued Mellouk, Sidi M’hamed Ben Taïba and Sidi Yakoub. Irrigation water quality evaluation was carried out by measuring and calculating physicochemical quality parameters monthly during three years: 2014, 2015 and 2016. For assessing the groundwater for irrigation suitability, parameters like pH, electrical conductivity, total dissolved solids, sodium adsorption ratio, pHc, adjusted sodium adsorption ratio, residual sodium carbonate, soluble sodium percentage, Kelly’s ratio, USSL, Wilcox’s diagram and permeability index suggest that the groundwater of the study area is moderately suitable for irrigation purposes. Based on USSL and Wilcox’s diagram, it falls under excellent to unsuitable category indicating low salinity and high sodium water, which can be used for irrigation in almost all types of soil with little danger of exchangeable sodium. The Pearson correlation coefficient rate revealed strong correlation between several parameters. The water of Sidi M’hamed Ben Taïba dam has the best appropriateness for irrigation purpose compared to the other dams. Its water may be used in irrigation without limitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Algeria MWR, CEDARE, Demmak. A. (2015). Algeria state of the water reporting, monitoring and evaluation operational framework and guidelines. Monitoring & Evaluation for water in North Africa (MEWINA) Project, Ministry of water resources, Algeria MWR, Water Resources Management Program-CEDARE.

  • American Public Health Association (APHA). (1995). American Water Works Association (AWWA), Water Pollution Control Federation. Standard methods for the examination of water and wastewater, 16th edn. Washington, DC, p 1268.

  • Asadollahfardi, G., Hemati, A., Moradinejad, S., & Asadollahfardi, R. (2013). Sodium adsorption ratio (sar) prediction of Thechalghazi river using artificial neural network (ann) Iran. Current World Environment,8(2), 169–178.

    Article  CAS  Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1976). Water quality for agriculture. Irrigation and drainage paper 29. Rome: FAO.

    Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture. FAO Irrigation and drainage paper 29 http://www.fao.org/docrep/003/T0234E/T0234E00.htm#TOC.

  • Bauder, T. A., Waskom, R. M., & Davis, J. G. (2014). Irrigation water quality criteria (Fact Sheet No. 0.506). Retrieved from Colorado State University Extension. http://www.ext.colostate.edu/pubs/crops/00506.pdf.

  • Bower, C. A., & Maasland, M. (1963). Sodium hazards of Punjab groundwater. West Pakistan Engineering Congress Proceeding,50, 49–56.

    Google Scholar 

  • Brown, E., Skougstad, M. W., & Fishman, M. J. (1970). In techniques of water resources investigations of US Geological Survey. Washington, DC: Book 5 US Government Printing Office.

    Google Scholar 

  • Chou, L., & Lun, J. S. (2018). Impact of high total dissolved solids, manganese and nickel ions on the hybrid zero-valent iron treatment system. Master’s thesis, Texas A & M University.

  • Chung, S. Y., Venkatramanan, S., Park, K. H., Son, J. H., & Selvam, S. (2018a). Source and remediation for heavy metals of soils at an iron mine of Ulsan City, Korea. Arabian Journal of Geosciences,11(24), 769–790.

    Article  Google Scholar 

  • Chung, S. Y., Venkatramanan, S., Selvam, S., & Kim, T. H. (2018b). Time series analyses of hydrological parameter variations and their correlations at a coastal area in Busan, South Korea. Hydrogeology Journal. https://doi.org/10.1007/s10040-018-1739-9.

    Article  Google Scholar 

  • Donald, D. B., Cessna, A. J., Sverko, E., & Glozier, N. E. (2006). Pesticides in surface drinking-water supplies of the Northern Great Plains. Environmental Health Perspectives, 115, 1183–1191.

    Article  Google Scholar 

  • Doneen, L. D. (1962). The influence of crop and soil on percolating water. Proceedings of the 1961 Biennial Conference on Groundwater Recharge, 156–163.

  • Doneen, L. D. (1964). Notes on water quality in agriculture. Water Science and Engineering, Paper 4001, Department of Water Sciences and Engineering, University of California, Davis.

  • Eaton, F. M. (1950). Significance of carbonate in irrigation waters. Soil Science,95, 123–133.

    Article  Google Scholar 

  • FAO. (1985). Criteria for water quality interpretation. Roma: FAO.

    Google Scholar 

  • Hao, J., Zhang, Y., Jia, Y., Wang, H., Niu, C., Gan, Y., et al. (2017). Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: A case study in Chaoyang District of Beijing City. Arabian Journal of Geosciences,10(6), 144. https://doi.org/10.1007/s12517-017-2885-4.

    Article  Google Scholar 

  • Katerji, N., Hoorn, J. W., van Hamdy, A., & Mastrorilli, M. (2000). Salt tolerance classification of crops according to soil salinity and to water stress day index. Agricultural Water Management,43, 99–109.

    Article  Google Scholar 

  • Kelly, W. P. (1940). Permissible composition and concentration of irrigated waters. Proceedings of the American Society of Civil Engineers, 66, 607–613.

    Google Scholar 

  • Kelly, W. P. (1963). Use of saline irrigation water. Soil Science,95(4), 385–390.

    Article  Google Scholar 

  • Landreau, A., & Monition, L. (1977). Nouvelle évaluation de la qualité de l’eau pour l’irrigation. Rapport BRGM inédit 77 SGL 628 HYD.

  • Merouche, A., Debaeke, P., Messahel, M., & Kelkouli, M. (2014). Response of durum wheat varieties to water in semi-arid Algeria. African Jounal of Agricultural Research,9(38), 2879–2892.

    Google Scholar 

  • Monition, L. (1969). Données sur l’utilisation des eaux selon leur qualité chimique. Rapport BRGM 69 SGL 121 HYD.

  • Mostafazadeh-Fard, B., Heidarpour, M., Aghakhani, A., & Feizi, M. (2008). Effects of leaching on soil desalinization for wheat crop in an arid region. Plant, Soil and Environment,54(1), 20–29.

    Article  CAS  Google Scholar 

  • MRE. (2009). Plan directeur d’aménagement des ressources en eaux de la région hydrographique chéliff Zahrez. Alger: Rapport de synthèse.

    Google Scholar 

  • Qadir, M., Ghafoor, A., & Murtaza, G. (2001). Use of sa-line-sodic waters through phytoremediation of cal-careous saline-sodic soils. Agricultural Water Management,50, 197–210.

    Article  Google Scholar 

  • Raghunath, H. M. (1987). Groundwater (2nd edn., p. 561). New Delhi: Wiley Eastern Ltd.

    Google Scholar 

  • Rahman, T. M., Rahman, S. H., & Majumder, R. K. (2012). Groundwater quality for irrigation of deep aquifer in southwestern zone of Bangladesh. Songklarakerin Journal of Science and Technology,34(3), 345–352.

    CAS  Google Scholar 

  • Raju, N. J. (2007). Hydrogeochemical parameters for assessment of groundwater quality in the upper Gunjanaeru River basin, Cuddapah district, Andhra Pradesh, south India. Environmental Geology,52, 1067–1074.

    Article  CAS  Google Scholar 

  • Richards, L. A. (Ed.). (1954). Diagnosis and improvements of saline and alkali soils. US Department of Agriculture Handbook 60, p 160.

  • Rodier, J., Legube, B., Merlet, M., & Brunet, R. (2009). L’analyse de l’eau. Ed. Dunod, Paris, p. 1600.

  • Saida, S., Tarik, H., Abdellah, A., Farid, H., & Hakim, B. (2017). Assessment of groundwater vulnerability to nitrate based on the optimised DRASTIC models in the GIS environment (Case of Sidi Rached Basin, Algeria). Geosciences,7(2), 20. https://doi.org/10.3390/geosciences7020020.

    Article  CAS  Google Scholar 

  • Sashikkumar, M. C., Selvam, S., Karthikeyan, N., Ramanamurthy, J., Venkatramanan, S., & Singaraja, C. (2017a). Remote sensing for recognition and monitoring of vegetation affected by soil properties. Journal Geological Society of India,90, 609–615.

    Article  Google Scholar 

  • Sashikkumar, M. C., Selvam, S., Lenin Kalyanasundaram, V., & Colins Johnny, J. (2017b). GIS based groundwater modeling study to assess the effect of artificial recharge: A case study from Kodaganar River Basin, Dindigul District, Tamil Nadu. Journal Geological Society of India,89, 57–64.

    Article  Google Scholar 

  • Selvam, S. (2014). Irrigational feasibility of groundwater and evaluation of hydrochemistry facies in the SIPCOT industrial area, South Tamilnadu, India: A GIS approach. Water Quality, Exposure and Health,1, 1. https://doi.org/10.1007/s12403-014-0146-2.

    Article  CAS  Google Scholar 

  • Selvam, S. (2015). A preliminary investigation of lithogenic and anthropogenic influence over fluoride ion chemistry in the groundwater of the southern coastal city, Tamilnadu, India. Environmental Monitoring and Assessment,187, 106. https://doi.org/10.1007/s10661-015-4326-8.

    Article  CAS  Google Scholar 

  • Selvam, S., Magesh, N. S., Sivasubramanian, P., Soundranayagam, John Prince, Manimaran, G., & Seshunarayana, T. (2014a). Deciphering of groundwater potential zones in Tuticorin, Tamilnadu, using remote sensing and GIS techniques. Journal of the Geological Society of India,85(5), 597–608.

    Article  Google Scholar 

  • Selvam, S., Manimaran, G., Sivasubramanian, P., Balasubramanian, N., & Seshunarayana, T. (2014b). GIS-based evaluation of Water Quality Index of groundwater resources around Tuticorin coastal city, south India. Environmental Earth Sciences,71, 2847–2867. https://doi.org/10.1007/s12665-013-2662-y.

    Article  CAS  Google Scholar 

  • Selvam, S., Singaraja, C., Venkatramanan, S., & Chung, S. Y. (2018). Geochemical appraisal of groundwater quality in Ottapidaram Taluk, Thoothukudi District, Tamil Nadu using graphical and numerical method. Journal of the Geological Society of India,92, 313–320.

    Article  CAS  Google Scholar 

  • Selvam, S., Venkatramanan, S., Chung, S. Y., & Singaraja, C. (2016). Identification of groundwater contamination sources in Dindugal district of Tamil Nadu, India using GIS and multivariate statistical analyses. Arabian Journal of Geosciences,9, 407. https://doi.org/10.1007/s12517-016-2417-7.

    Article  CAS  Google Scholar 

  • Selvam, S., Venkatramanan, S., & Singaraja, C. (2015). A GIS based assessment of water quality pollution indices for heavy metal contamination in Tuticorin corporation, Tamil Nadu, India. Arabian Journal of Geosciences,1, 1. https://doi.org/10.1007/s12517-015-1968-3.

    Article  CAS  Google Scholar 

  • Selvam, S., Venkatramanan, S., Sivasubramanian, P., Chung, S. Y., & Singaraja, C. (2017). Geochemical characteristics and evaluation of minor and trace elements pollution in groundwater of Tuticorin City, Tamil Nadu, India using geospatial techniques. Journal of the Geological Society of India,90(1), 62–68.

    Article  CAS  Google Scholar 

  • Simler, R. (2009). Diagrammes software. http://www.lha.univ-avignon.fr/LHA-Logiciels.htm.

  • Singaraja, C., Chidambaram, S., Jacob, Noble, Selvam, S., & Prasanna, M. V. (2016). Tidal effects on groundwater dynamics in shallow coastal aquifers—southeast coast of Tamilnadu, India. Arabian Journal of Geosciences,9, 467.

    Article  Google Scholar 

  • Singaraja, C., Chidambaram, S., Srinivasamoorthy, K., Anandhan, P., & Selvam, S. (2015). A study on assessment of credible sources of heavy metal pollution vulnerability in groundwater of Thoothukudi Districts, Tamilnadu, India. Water Quality, Exposure and Health,1, 1. https://doi.org/10.1007/s12403-015-0162-x.

    Article  CAS  Google Scholar 

  • Todd, D. K. (1980). Ground water hydorlogy (2nd ed., pp. 10–138). New York: Wiley.

    Google Scholar 

  • US Salinity Laboratory. (1999). Diagnosis and improvement of saline and Alkali soils. USDA Agriculture Handbook 60 (p. 160). Washington, DC: Etats-Unis, US Government Printing Office.

    Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Kim, T. H., Kim, B., & Selvam, S. (2016). Geostatistical techniques to evaluate groundwater contamination and its sources in Miryang City. Korea Environmental Earth Science,75, 994. https://doi.org/10.1007/s12665-016-5813-0.

    Article  CAS  Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Ramkumar, T., & Selvam, S. (2018a). Ecological risk assessment of selected heavy metals in the surface sediments of three estuaries in the southeastern coast of India. Environmental Earth Sciences,77(4), 116. https://doi.org/10.1007/s12665-018-7294-9.

    Article  CAS  Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Selvam, S., Lee, S. Y., & Elzain, H. M. (2017a). Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS. Environmental Science and Pollution Research,24, 23679–23693.

    Article  CAS  Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Selvam, S., Lee, S. Y., & Elzain, H. E. (2018b). Factors controlling groundwater quality in the Yeonjegu District of Busan City, Korea, using the hydrogeochemical processes and fuzzy GIS. Environmental Science and Pollution Research,1, 1. https://doi.org/10.1007/s11356-017-9990-5.

    Article  CAS  Google Scholar 

  • Venkatramanan, S., Chung, S. Y., Selvam, S., Son, J. H., & Kim, Y. J. (2017b). Interrelationship between geochemical elements of sediment and groundwater at Samrak Park Delta of Nakdong River Basin in Korea: multivariate statistical analyses and artificial neural network approaches. Environmental Earth Sciences,76, 456. https://doi.org/10.1007/s12665-017-6795-2.

    Article  CAS  Google Scholar 

  • Wilcox, L. V. (1948). The quality of water for agricultural use. US Dept Agriculture Tech. Bull. 962, US Washington, DC.

  • Wilcox, L. V. (1955). Classification and use of irrigation waters. USDA circular no. 969, p. 19.

  • Wilcox, L. V. (1958). Determining the quality of irrigation water. US Dept. of Agric. Agr. Inform. Bull. 194.

Download references

Acknowledgements

The author S. Selvam is thankful to Shri A.P.C.V. Chockalingam, Secretary, and Dr. C. Veerabahu, Principal, V.O.C College, Tuticorin, for their constant encouragement and support, in providing necessary facilities to carry out analysis work and computer facilities. The authors thank the editor and six anonymous reviewers who greatly improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Selvam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merouche, A., Selvam, S., Imessaoudene, Y. et al. Assessment of dam water quality for irrigation in the northeast of catchment Cheliff-Zahrez, Central Algeria. Environ Dev Sustain 22, 5709–5730 (2020). https://doi.org/10.1007/s10668-019-00447-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00447-9

Keywords

Navigation