Skip to main content

Advertisement

Log in

Can renewable energy technologies improve the management of stressed water resources threatened by climate change? Argentine drylands case study

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

This work addresses increasing concerns about water management for rural productive activities in the vast dry regions of Latin America by assessing renewable energy technologies (RETs) that could be suitable for localized needs. Forecasted trends in climate change and variability make this analysis very relevant, in an area where very little published work exists. While Argentina is widely known for its fertile pampas, around 75 % of the country consists of dry lands. In addition, erosion is increasing by up to 650,000 hectares each year. The coordinated adoption of a set of actions, including land use planning and strengthening productive activities that guarantee access to water and improve water and soil management is needed. Renewable energies could help towards achieving these aims, if water is made available at affordable costs and with suitable technologies. This paper evaluates experiences with three RETs—photovoltaic pumping from deep wells, small wind turbine pumping, and high-power wind turbines, and discusses a potential role for use in rural Argentina. Although cheaper and more reliable renewable alternatives to energy sources such as diesel could be used for pumping from groundwater resources in isolated locations, limitations arise when pumping head and/or water volume requirements are large or highly seasonal. The cost increases and technical challenges of accessing this deeper water, as indicated by case studies, emphasize the importance of planning and support schemes development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Rio Negro province is included when convenient, as it belongs to the studied river basin, but some large scale features of the agriculture exploitation along valleys cannot be compared and integrated to the rural areas under analysis. Thus, this province is part of the area diagnosis, but it is excluded from the analysis and comparison of agriculture productive units.

  2. Irrigated land in Neuquén is not relevant, comprising only 3.2% of total irrigated area (see Appendix, Table 4).

  3. Indicators considered: Affordability (cost of the technology relative to user income); Efficiency (cost of the services provided); Risk of obsolescence (temporal sustainability of the technology and associated services); Flexibility (ability to satisfy both current and enhanced uses); and Technological capability (compatibility with the services network that supports the technology).

  4. Indicators considered: Suitability and urgency (ability to provide critical services); Effectiveness and efficacy (in relation to society objectives); Resilience (technology effects on human/community resilience); Diversification (contribution of the technology towards a wider range of options); and Environmental protection (impacts associated to the implementation of a technology in a given context).

  5. For further detail of niches assessment for renewable energies see Nadal (2006). The concept of niche is applied to select technology options suitable for poor populations according to their technical capacity and financial feasibility. The study focuses on the assessment and policy formulation for Argentina of solar water heaters and wind energy converters.

  6. See assessment comparing pumping options for Namibia (EmCom 2006).

  7. Peak Watt—unit is used to rate the performance of solar cells, modules, or arrays; maximum nominal output of a photovoltaic device is expressed in watts (Wp) under standardized test conditions, usually 1,000 watts per square meter of sunlight with other conditions, such as temperature specified. The energy captured by the panel is fully transmitted to the pump, if 25% of excess capacity is calculated for dimensioning required panels surface, it is advisable to employ seven panels of 100 Wp instead of six: 570W × 1.25 ≈ 700Wp.

References

  • Abraham, M. A. (2007). Riego en Argentina, Dirección de Agricultura, Secretaría de Agricultura, Ganadería, Pesca y Alimentos, Argentina.

  • Barros, V. (1997). Vulnerabilidad de los oasis comprendidos entre 29ºS y 36ºS ante condiciones más secas en los Andes altos—Estudios de vulnerabilidad y mitigación frente al cambio climático en Argentina.

  • CIMA/CONICET (2005). Estimación de Escenarios Regionales de Cambio Climático Mediante el Uso de Modelos Regionales. Informe Nacional de Cambio Climático. Componente B9 de la Segunda Comunicación Nacional (SCN) del Gobierno de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC). Informe Final. Proyecto GEF. BIRF PF 51286 AR. Buenos Aires. Executive summary available: http://aplicaciones.medioambiente.gov.ar/archivos/web/UCC/File/modelos.pdf. Last visited 2 August 2012.

  • D′Attellis, R. (2005). Alfalfa—Producción de semilla en Tinogasta, Dirección Provincial de Programación del Desarrollo, Ministerio de Producción y Desarrollo, Gobierno de la Provincia de Catamarca.

  • EmCom Consulting Group (2006). Feasibility assessment for the replacement of diesel pumps with solar water pumps, Ministry of mines and energy/UNDP/GEF.

  • Energy Secretariat (2006b). Permer Project, Electricity supply of rural scattered population by renewable energy Feasibility Study, San Juan Province. http://energia.mecon.gov.ar/permer/San%20Juan.pdf.

  • Failde de Calvo, V., et al. (2004). Desertificación en la República Argentina. Región Noroeste –Puna y Valles Áridos-. El desarrollo rural participativo como herramienta de lucha contra la desertificación, INTA EEA Salta.

  • Fundación Bariloche (2011). Clean energy and water: An assessment of services for adaptation to climate change. Fundacion Bariloche/IDRC, December 2011. http://www.idrc.ca/EN/Programs/Agriculture_and_the_Environment/Climate_Change_and_Water/Documents/106298-Energy-exploration-report-Argentina.pdf. Last visited 2 August 2012.

  • Fundación Torcuato Di Tella (2006a) e Instituto Torcuato Di Tella. Programa Nacional de Adaptación y Planes Regionales de Adaptación. Componente B8 de la Segunda Comunicación Nacional (SCN) del Gobierno de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC). Proyecto GEF. BIRF PF 51286 AR. Informe Final. Buenos Aires. 2006. Executive summary available at:http://aplicaciones.medioambiente.gov.ar/archivos/web/UCC/File/programa_nacional_adaptacion.pdf. Last visited 2 August 2012.

  • Fundación Torcuato Di Tella (2006b) e Instituto Torcuato Di Tella. Vulnerabilidad de la Patagonia y Sur de las Provincias de Buenos Aires y La Pampa al Cambio Climático. Informe Nacional de Cambio Climático. Componente B5 de la Segunda Comunicación Nacional (SCN) del Gobierno de la República Argentina a la Convención Marco de las Naciones Unidas sobre Cambio Climático (CMNUCC). Informe Final. Buenos Aires. 2006. Executive summary available at:http://aplicaciones.medioambiente.gov.ar/archivos/web/UCC/File/vulnerabilidad_patagonia.pdf. Last visited 2 August 2012.

  • Girardin, L. O. (2010) Estudio Regional de la Economía del Cambio Climático en Sudamérica (ERECC-SA) ECLAC-CEPAL.

  • IMPSA (2012). Parque Eólico Arauco I, Puerta de Arauco—Provincia de La Rioja http://www.impsa.com/es/descargas/WIND/ARAUCO%20I.pdf. Last visited 23 July 2012.

  • INDEC (2002). CNA, Censo Nacional Agropecuario 2002, Ministerio de Agricultura, Ganadería y Pesca, http://www.indec.gov.ar/agropecuario/cna_principal.asp.

  • INDEC (2008). CNA, Censo Nacional Agropecuario 2008, Resultados provisorios. Ministerio de Agricultura, Ganadería y Pesca, http://www.indec.gov.ar/censoAgro2008/cna2008.asp.

  • INTI Magazine, Escenarios Tecnológicos para el Bicentenario, page 47. INTI 2010 http://www.inti.gov.ar/pdf/inti2010/inti2010_2.pdf last visited 26 December 2012.

  • IPCC Working Group III (2000). Summary for policy makers, Emissions Scenarios, Grupo Intergubernamental de Expertos sobre el Cambio Climático.

  • León, A., et al. (2005). Riego y Pobreza Rural: dos estudios de caso en la región semiárida de Chile y Argentina, Universidad de Chile.

  • Miranda, O. (2009). Trayectoria tecnológica y uso del agua en la agricultura argentina bajo riego, Simposio “El acceso al agua en América: historia, actualidad y perspectivas”, 53 Congreso Internacional de Americanistas, México.

  • Miranda, O., et al. (2010). El consumo hídrico de la agricultura y la minería aurífera en la Cuenca del río Jachal, Aqua-LAC, Vol. 2, No 1.

  • Nadal, G., et al. (2006). Renewable energy technologies for poverty alleviation (RETs), GNESD/Fundación Bariloche, October 2006.

  • Nickisch, M. (2007). Manejo de los recursos hídricos en zonas áridas y semiáridas para áreas de secano, INTA.

  • Paoli, H. P., et al. (2003). Aprovechamiento de los recursos hídricos y tecnología de riego en el Altiplano Argentino, EEA INTA Salta/CIED.

  • Parodi (2003). Orlando and others, Balde de Leyes: The Electrification of a Remote Village in Argentina, Fraunhofer Institute for Solar Energy Systems ISE/UNSJ. http://artsarchive.tripod.com/03sene/argentina_Solar.pdf.

  • Perez Pardo, O., et al. (2003). Manual sobre desertificación, Secretaría de Ambiente y Desarrollo Sustentable de Argentina.

  • Pietragalla, V., & Corso, M. L. (2008). Proyecto Evaluación de la Degradación de Tierras en Zonas Áridas (LADA), República Argentina. Informe de Avance a escala local. Dirección de Conservación del Suelo y Lucha contra la Desertificación. Secretaría de Abiente y Desarrollo Sustentable de la Nación. April 2008.

  • Rodríguez, C., et al. (2000). Bombeo fotovoltaico—Un análisis técnico social de instalaciones en la provincia de Catamarca, Subsecretaría de ciencia y tecnología de Catamarca, ASADES 04-07.

  • Searles, P., et al. (2011). El consumo del agua por el cultivo de olivo (Olea europaea L.) en el noroeste de Argentina: una comparación con la Cuenca Mediterránea. Ecología Austral, 21:15–28.

    Google Scholar 

  • Siffredi, G., et al. (1998). Guías de evaluación forrajera de campos para la determinación de la carga animal, INTA, EEA Bariloche.

  • Sirolesi, M. (2009). El deterioro de la calidad del agua de riego. Asociación inspecciones de cauces zona río Mendoza.

  • Torres, N. (2005). Evolución del riego presurizado en la provincia de La Rioja, Universidad Nacional de Chilecito.

  • Valicenti, J. L. (2001). Secretaria de Planificación y Desarrollo, Cipolletti, June 2001. http://www.aic.gov.ar/aic/publicaciones/CUENCA_NQN.pdf. Last visited 22 July 2012.

  • Villavicencio, A. (2003). A systems view of sustainable energy development, Discussion Paper, UNEP Risø Centre.

Download references

Acknowledgments

The authors would like to acknowledge the International Development Research Centre’s Climate Change and Water Program for its generous financial and coordination support, and Erin Palmer for her editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Bravo.

Appendix

Appendix

In arid and semiarid regions of Argentina, agricultural use of water represents more than 90 % of total water use (Miranda 2009). Average annual water requirements for crop irrigation in the Patagonian oasis are close to 7,000 m3/hectare (assuming a water deficit of 700 mm/year). This is equivalent to the specific water demand per hectare of urban areas with a density of 6,000 inhabitants/km2. This figure stresses the relevance of water requirements for agriculture in relation to those for residential uses and other productive activities. Irrigation water requirements in other dry areas are also high, even for vegetable species adapted to these conditions (e.g. olive) (Searles 2011). Water requirement for animal husbandry is much lower than irrigated agriculture, and explain why the former is the main productive activity in the dry region outside the irrigated valleys (Tables 3, 4, 5).

Table 3 Reference water requirement levels by type of use
Table 4 Irrigated area by province and irrigation method
Table 5 Shares of irrigated area by irrigation method and Agricultural Productive Unit (APU) size Catamarca, La Rioja, San Juan, Mendoza and Neuquén provinces

Surface water supply of smaller rural productive units is still more widespread than groundwater supply (Table 6). However, a significant fraction of small size rural productive units have groundwater supply systems, and consequently depend on pumping. More than 80 % of the rural productive units that use channels for water supply are smaller than 25 hectares. Also, within surface supply, channels are much more common than direct water supply. For medium and large size rural productive units, surface supply is still prevalent but groundwater supply has a higher significance than for smaller rural units (Table 7).

Table 6 Water source and distribution system by APU size (expressed in number of APU)
Table 7 Number of wells and rural productive units using groundwater by APU size Catamarca, La Rioja, San Juan, Mendoza

It is also relevant to assess specific improvement measures related with water supply and storage in rural productive units. Table 8 presents this type of data for the region under study.

Table 8 Water supply and storage infrastructure by APU size

See Table 9 for a description of technologies used for water extraction and supply.

Table 9 Technologies used for water extraction/supply

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nadal, G.H., Bravo, G., Girardin, L.O. et al. Can renewable energy technologies improve the management of stressed water resources threatened by climate change? Argentine drylands case study. Environ Dev Sustain 15, 1079–1097 (2013). https://doi.org/10.1007/s10668-012-9427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-012-9427-8

Keywords

Navigation