Skip to main content
Log in

Modeling and Optimization of Coagulation-Flocculation Process to Remove High Phosphate Concentration in Wastewater from a Metal-Mechanic Industry

  • Research
  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this work, the performance of an empirical coagulation-flocculation plant to treat wastewater from a metal-mechanic industry located in an industrial park of Queretaro city, México, is studied. Wastewater samples were obtained from the homogenization tank and treated with the employed industrial reactants through an experimental jar test to obtain statistical data. Then, a response surface methodology with ANOVA analysis was used to model the process, and the ε-constraints methodology was used to optimize the coagulation-flocculation process in terms of economic and environmental impact. The results showed an improvement of phosphates removal, but a minimal increment of 1.01% of operational costs regarding to the current operating conditions. Additionally, the results offered a certain reference value for practical application of the coagulation-flocculation process using calcium hydroxide, aluminum salts, and polyacrylamide/urea for the main removal of phosphates in real effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Duszczyk, J., Siuzdak, K., Klimczuk, T., Strychalska-Nowak, J., & Zaleska-Medynska, A. (2018). Manganese phosphatizing coatings: The effects of preparation conditions on surface properties. Materials (Basel), 11, 1–22. https://doi.org/10.3390/ma11122585

    Article  CAS  Google Scholar 

  2. Statsyuk, V., Fogel, L., Bold, A., Sultanbek, U., Ait, S., & Sassykova, L. (2020). Protective properties of phosphate coatings based on rust converters. Journal of Chemical Technology and Metallurgy, 55, 2151–2157.

    CAS  Google Scholar 

  3. Humphrey, C. P. (2022). Phosphate treatment by five onsite wastewater systems in a nutrient sensitive watershed. Earth, 3, 683–698. https://doi.org/10.3390/earth3020039

    Article  ADS  Google Scholar 

  4. Schindler, D. W. (2012). The dilemma of controlling cultural eutrophication of lakes. Proceedings of the Royal Society B: Biological Sciences, 279, 4322–4333. https://doi.org/10.1098/rspb.2012.1032

    Article  CAS  PubMed Central  Google Scholar 

  5. Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., & Martikainen, P. J. (2003). Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere, 52, 609–621. https://doi.org/10.1016/S0045-6535(03)00243-1

    Article  CAS  PubMed  ADS  Google Scholar 

  6. Li, Y., Shang, J., Zhang, C., Zhang, W., Niu, L., Wang, L., & Zhang, H. (2021). The role of freshwater eutrophication in greenhouse gas emissions: A review. Science of the Total Environment, 768, 144582. https://doi.org/10.1016/j.scitotenv.2020.144582

    Article  CAS  PubMed  ADS  Google Scholar 

  7. West, W. E., Creamer, K. P., & Jones, S. E. (2016). Productivity and depth regulate lake contributions to atmospheric methane. Limnology and Oceanography, 61, S51–S61. https://doi.org/10.1002/lno.10247

    Article  ADS  Google Scholar 

  8. Gong, Y., & Zhao, D. (2014). Physical-chemical processes for phosphorus removal and recovery. Comprehensive Water Quality and Purification, Elsevier Inc. https://doi.org/10.1016/B978-0-12-382182-9.00086-4

  9. Lai, Y. T., Huang, Y. S., Chen, C. H., Lin, Y. C., Jeng, H. T., Chang, M. C., Chen, L. J., Lee, C. Y., Hsu, P. C., & Tai, N. H. (2020). Green treatment of phosphate from wastewater using a porous bio-templated graphene oxide/MgMn-layered double hydroxide composite. iScience, 23, 10106. https://doi.org/10.1016/j.isci.2020.101065

    Article  CAS  Google Scholar 

  10. Morse, G. K., Brett, S. W., Guy, J. A., & Lester, J. N. (1998). Review: Phosphorus removal and recovery technologies. Science of the Total Environment, 212, 69–81. https://doi.org/10.1016/S0048-9697(97)00332-X

    Article  CAS  ADS  Google Scholar 

  11. Sibiya, N. P., Amo-Duodu, G., Tetteh, E. K., & Rathilal, S. (2022). Model prediction of coagulation by magnetised rice starch for wastewater treatment using response surface methodology (RSM) with artificial neural network (ANN). Scientific African, 17, e01282. https://doi.org/10.1016/j.sciaf.2022.e01282

    Article  CAS  Google Scholar 

  12. Ozairi, N., Mousavi, S. A., Samadi, M. T., Seidmohammadi, A., & Nayeri, D. (2020). Removal of fluoride from water using coagulation–flocculation procea comparative study. Desalinization and Water Treatment, 180, 265–270. https://doi.org/10.5004/dwt.2020.25064

    Article  CAS  Google Scholar 

  13. Sakhi, D., Elmchaouri, A., Rakhila, Y., Abouri, M., Souabi, S., Hamdani, M., & Jada, A. (2020). Optimization of the treatment of a real textile wastewater by coagulation–flocculation processes using central composite design. Desalinization and Water Treatment, 196, 33–40. https://doi.org/10.5004/dwt.2020.25929

    Article  CAS  Google Scholar 

  14. Watanabe, Y. (2017). Flocculation and me. Water Research, 114, 88–103. https://doi.org/10.1016/j.watres.2016.12.035

    Article  CAS  PubMed  Google Scholar 

  15. Mahmoudabadi, Z. S., Rashidi, A., & Maklavany, D. M. (2022). Optimizing treatment of alcohol vinasse using a combination of advanced oxidation with porous α-Fe2O3 nanoparticles and coagulation-flocculation. Ecotoxicology and Environmental Safety, 234, 113354. https://doi.org/10.1016/j.ecoenv.2022.113354

    Article  CAS  PubMed  Google Scholar 

  16. Okolo, B. I., Adeyi, O., Oke, E. O., Agu, C. M., Nnaji, P. C., Akatobi, K. N., & Onukwuli, D. O. (2021). Coagulation kinetic study and optimization using response surface methodology for effective removal of turbidity from paint wastewater using natural coagulants. Scientific African, 14, e00959. https://doi.org/10.1016/j.sciaf.2021.e00959

    Article  CAS  Google Scholar 

  17. Al-Risheq, D. I. M., Shaikh, S. M. R., Nasser, M. S., Almomani, F., Hussein, I. A., & Hassan, M. K. (2022). Influence of combined natural deep eutectic solvent and polyacrylamide on the flocculation and rheological behaviors of bentonite dispersion. Separation and Purification Technology, 293, 121109. https://doi.org/10.1016/j.seppur.2022.121109

    Article  CAS  Google Scholar 

  18. Singh, B., & Kumar, P. (2020). Pre-treatment of petroleum refinery wastewater by coagulation and flocculation using mixed coagulant: Optimization of process parameters using response surface methodology (RSM). Journal of Water Process Engineering, 36, 101317. https://doi.org/10.1016/j.jwpe.2020.101317

    Article  Google Scholar 

  19. Bobadilla, M. C., Lorza, R. L., García, R. E., Gómez, F. S., & González, E. P. V. (2019). Coagulation: Determination of key operating parameters by multi-response surface methodology using desirability functions. Water (Switzerland), 11, 1–21. https://doi.org/10.3390/w11020398

    Article  CAS  Google Scholar 

  20. Marín-Galvín, R. (1998). “Jar-test” in water treatment: A valuable tool. Tecnología del agua, 181, 25–34.

    Google Scholar 

  21. Kadooka, H., Miyajima, T., Tanaka, T., Jami, M. S., & Iwata, M. (2017). Simplified flocculation model for inorganic and polymer flocculants. Separation Science and Technology, 52, 2802–2814. https://doi.org/10.1080/01496395.2017.1335322

    Article  CAS  Google Scholar 

  22. Zangooei, H., Delnavaz, M., & Asadollahfardi, G. (2016). Prediction of coagulation and flocculation processes using ANN models and fuzzy regression. Water Science and Technology, 74, 1296–1311. https://doi.org/10.2166/wst.2016.315

    Article  CAS  PubMed  Google Scholar 

  23. Khettaf, S., Bouhidel, K. E., Khouni, I., Louhichi, G., Ghrabi, A., Bousselmi, L., & Bouhelassa, M. (2021). Optimization of coagulation-flocculation process in the treatment of surface water for a maximum dissolved organic matter removal using RSM approach. Water Supply, 21, 3042–3056. https://doi.org/10.2166/ws.2021.070

    Article  CAS  Google Scholar 

  24. Nayeri, D., & Mousavi, S. A. (2020). Treatment of highly turbid water in disaster conditions using coagulation-flocculation process: Modeling and optimization. Water Quality Research Journal, 55, 358–369. https://doi.org/10.2166/wqrj.2020.120

    Article  CAS  Google Scholar 

  25. Iloamaeke, I. M., Nnaji, N. J., Okpala, E. C., Eboatu, A. N., & Onuegbu, T. U. (2021). Mercenaria mercenaria shell: Coagulation-flocculation studies on colour removal by response surface methodology and nephlometric kinetics of an industrial effluent. Journal of Environmental Chemical Engineering, 9, 105715. https://doi.org/10.1016/j.jece.2021.105715

    Article  CAS  Google Scholar 

  26. Myers, R. H., & Montgomery, D. C. (1971) Response surface methodology: Process and product optimization using designed experiments, A Wiley-Interscience publication.

  27. Dotto, J., Fagundes-Klen, M. R., Veit, M. T., Palácio, S. M., & Bergamasco, R. (2019). Performance of different coagulants in the coagulation/flocculation process of textile wastewater. Journal of Cleaner Production, 208, 656–665. https://doi.org/10.1016/j.jclepro.2018.10.112

    Article  CAS  Google Scholar 

  28. Pinto, M. B., Samanamud, G. R. L., Baston, E. P., França, A. B., Naves, L. L. R., Loures, C. C. A., & Naves, F. L. (2019). Multivariate and multiobjective optimization of tannery industry effluent treatment using Musa sp flower extract in the coagulation and flocculation process. Journal of Cleaner Production, 219, 655–666. https://doi.org/10.1016/j.jclepro.2019.02.060

    Article  CAS  Google Scholar 

  29. Joaquin, A. A., & Nirmala, G. (2019). Statistical modeling and process optimization of coagulation–flocculation for treatment of municipal wastewater. Desalinization and Water Treatment, 157, 90–99. https://doi.org/10.5004/dwt.2019.24162

    Article  CAS  Google Scholar 

  30. Daud, N. M., Sheikh-Abdullah, S. R., & Abu-Hasan, H. (2018). Response surface methodological analysis for the optimization of acid-catalyzed transesterification biodiesel wastewater pre-treatment using coagulation–flocculation process. Process Safety and Environmental Protection, 113, 184–192. https://doi.org/10.1016/j.psep.2017.10.006

    Article  CAS  Google Scholar 

  31. Benmahdi, F., Khettaf, S., & Kolli, M. (2022). Efficient removal of Cr(VI) from aqueous solution using activated carbon synthesized from silver berry seeds: modeling and optimization using central composite design. Biomass Conversion and Biorefinery, 1–15. https://doi.org/10.1007/s13399-022-03041-8

  32. Rice, E. W., Bridgewater, L., Association, A. P. H., Association, A. W. W., & Federation W. E. (2012). Standard methods for the examination of water and wastewater. American Public Health Association.

  33. Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  34. Khuri, A. I., & Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 128–149. https://doi.org/10.1002/wics.73

    Article  Google Scholar 

  35. Achenie, L. E. K., Sharifi, Y., & Lee, D. G. (2016). Development of a multiscale strategy and application to chemical vapor deposition. Computer Aided Chemical Engineering, 39, 95–123. https://doi.org/10.1016/B978-0-444-63683-6.00004-6

    Article  CAS  Google Scholar 

  36. Arora, J. S. (2017). Multi-objective optimum design concepts and methods, introduction to optimum design. Elsevier Inc. https://doi.org/10.1016/b978-0-12-800806-5.00018-4

  37. Abdul-majeed, B. A., & Oleiwi, H. B. (2015). Evaluation of alum/lime coagulant for the removal of turbidity from Al- Ahdab Iraqi oilfields produced water. Journal of Engineering, 21, 145–153.

    Article  Google Scholar 

  38. Duan, J., Cao, X., Chen, C., Shi, D., Li, G., & Mulcahy, D. (2012). Effects of Ca(OH)2 assisted aluminum sulfate coagulation on the removal of humic acid and the formation potentials of tri-halomethanes and haloacetic acids in chlorination. Journal of Environmental Science (China), 24, 1609–1615. https://doi.org/10.1016/S1001-0742(11)60953-4

    Article  CAS  Google Scholar 

  39. Joshi, S., & Shrivastava, K. (2011). Recovery of alum coagulant from water treatment plant sludge: A greener approach for water purification. International Journal of Advanced Computer Research, 1, 101–103.

    Google Scholar 

  40. Smotraiev, R., Nehrii, A., Koltsova, E., Anohina, A., Sorochkina, K., & Ratnaweera, H. (2022). Comparison of wastewater coagulation efficiency of pre-polymerised zirconium and traditional aluminium coagulants. Journal of Water Process Engineering, 47(May), 102827. https://doi.org/10.1016/j.jwpe.2022.102827

    Article  Google Scholar 

  41. Sibiya, N. P., Amo-Duodu, G., Kweinor Tetteh, E., & Rathilal, S. (2022). Response surface optimisation of a magnetic coagulation process for wastewater treatment via Box-Behnken. Materials Today: Proceedings, 62, S122–S126. https://doi.org/10.1016/j.matpr.2022.02.098

    Article  CAS  Google Scholar 

  42. Chen, Y., Long, J., Chen, S., Xie, Y., Xu, Z., Ning, Z., Zhang, G., Xiao, T., Yu, M., Ke, Y., Peng, L., & Li, H. (2022). Multi-step purification of electrolytic manganese residue leachate using hydroxide sedimentation, struvite precipitation, chlorination and coagulation: Advanced removal of manganese, ammonium, and phosphate. Science of the Total Environment, 805, 150237. https://doi.org/10.1016/j.scitotenv.2021.150237

    Article  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Universidad de Guanajuato for facilities to develop this work and to the company for the information and wastewater samples. Also, Carlos Gómez Rodríguez is grateful to CONACyT for the scholarship granted for his Master’s degree studies.

Funding

This work did not receive any funding source.

Author information

Authors and Affiliations

Authors

Contributions

C.G.-R. performed the experiments and wrote the first version of the manuscript. T.P. and F.G.-C. implemented the experiments and the mathematical modelling. Z.G.-A. provided chemicals and laboratory equipment. T.P. wrote the final version of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Tzayam Pérez.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All the material is owned by the authors, and no permissions are required.

Competing Interests

All authors have no competing interests or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 46 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Rodríguez, C., Gómez-Castro, F.I., Gamiño-Arroyo, Z. et al. Modeling and Optimization of Coagulation-Flocculation Process to Remove High Phosphate Concentration in Wastewater from a Metal-Mechanic Industry. Environ Model Assess (2024). https://doi.org/10.1007/s10666-024-09967-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10666-024-09967-9

Keywords

Navigation