Skip to main content
Log in

Investigation and Determination of Optimal Tilt Angles and Solar Radiation Gains for Fixed and Tracked South-Facing Solar Photovoltaic Surfaces in Provinces of Türkiye

  • Research
  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The solar photovoltaic (PV) plants in Türkiye have been advancing at a remarkable rate in the last decades because of the region’s high solar energy potential. However, it is understood from the literature review that there are still limited research works on the optimization of the tilt angles of PV surfaces to maximize the solar radiation of the PV energy systems in this region. Therefore, this study focuses on a quantitative analysis of the optimal tilt angles of south-oriented PV surfaces and the amount of solar radiation collected by optimally tilted and tracked PV surfaces for all provinces by using the National Aeronautics and Space Administration-Surface meteorology and Solar Energy (NASA-SSE) horizontal radiation data for the provinces in Türkiye. Also, a numerical method is proposed to estimate the average daily solar radiation values falling on optimally tilted and tracked PV surfaces in 81 provinces and 7 geographical regions of Türkiye in this paper. An optimal tilt angles map has been created for all provinces where solar plants could be established. Solar data calculations have been carried out for all provinces, and the results are presented for the average total radiation amounts and percentage contributions that can be obtained in the case of installing fixed systems and tracking systems. It is found that the tilt angles of all provinces and regions are below the latitude values of Türkiye (36°′N–42°′N). Annual fixed optimal tilt angle values for south-facing PV surfaces are found between 28° and 36° throughout the year. It is observed that the daily average total radiation values falling on PV surfaces are considerably affected by the geographical and climatic characteristics even between the provinces with close latitude values in Türkiye. The results indicate that the tracking systems provide remarkable solar energy gains compared to the annual fixed systems. The proposed methodology can be used in the case of the implementation of a large-scale PV plant in any location in Türkiye, and this knowledge can be extended to the world thanks to low computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available in the NASA-ASDC repository. The graphical and tabular data generated during the current study can be found in the manuscript. The graphical and tabular data generated during the current study can be found in the manuscript. https://asdc.larc.nasa.gov/project/SSE.

Abbreviations

\({G}_{sc}\) :

Solar constant, (1367 W/m2)

\(H\) :

Total radiation for each hour of the “average day” (W/m2)

H m :

Monthly avg. daily radiation on a horizontal surface (W/m2)

H 0d :

Daily ext. radiation on a horizontal surface (W/m22)

H 0m :

Monthly avg. daily ext. rad. on a horizontal surface (W/m22)

H t :

Hourly tilted radiation falling on the surface, (W/m2)

H td :

Total daily tilted radiation (W/m2)

H b :

Total horizontal beam radiation (W/m2)

H df :

Total horizontal diffuse radiation (W/m2)

H dfm :

Monthly average daily diffuse radiation (W/m2)

k tm :

Monthly average clearness index (unitless)

n :

Day of the year, n = 1 for Jan.; n = 32 for Feb. (n)

r d :

The ratio of daily total diffuse radiation (W/m2)

R t :

The ratio of hourly total to daily total radiation (W/m2)

R b :

The ratio of monthly average daily beam radiation (W/m2)

R :

The rotation angle of the solar surface about the axis (°)

ω :

Solar hour angle (rad)

ω s :

Sunset hour angle (rad)

γ:

Solar surface azimuth (º)

γ a :

Tracking axis azimuth (°)

γ s :

Solar azimuth (°)

ρ :

Ground reflectivity, Albedo, ρ = 0.2 (coeff)

β :

Solar surface tilt (°)

β a :

Tracking axis tilt (°)

θ:

The incidence angle of beam rad. on the surface (°)

θ s :

The solar incidence angle of beam radiation (°)

θ a :

The incidence angle of beam radiation on-axis (°)

θ z :

Solar zenith angle (°)

δ :

Solar declination angle (°)

 :

Latitude of the site, angular location (°)

α s :

Solar altitude angle (°)

References

  1. Sudhakar, K., Srivastava, T., Satpathy, G., & Premalatha, M. (2013). Modelling and estimation of photosynthetically active incident radiation based on global irradiance in Indian latitudes. International Journal of Energy and Environmental Engineering, 4(21), 1–19. https://doi.org/10.1186/2251-6832-4-21

  2. Gunerhan, H., & Hepbasli, A. (2007). Determination of the optimum tilt angle of solar collectors for building applications. International Journal of Building and Environment, 42(2), 779–783. https://doi.org/10.1016/j.buildenv.2005.09.012

    Article  Google Scholar 

  3. Benghanem, M. (2011). Optimization of Tilt Angle for Solar Panel: A Case Study for Madinah. Saudi Arabia. Applied Energy, 88(4), 1427–1433. https://doi.org/10.1016/j.apenergy.2010.10.001

    Article  ADS  Google Scholar 

  4. Chang, T. P. (2009). The sun’s apparent position and the optimum tilt angle of a solar collector in the northern hemisphere. International Journal of Solar Energy, 83(8), 1274–1284. https://doi.org/10.1016/j.solener.2009.02.009

    Article  Google Scholar 

  5. Talebizadeh, P., Mehrabian, M. A., & Abdolzadeh, M. (2011). Determination of optimum slope angles of solar collectors based on new correlations. International Journal of Energy, Sources Part A: Utilization, and Environmental Effects, 33(17), 1567–1580. https://doi.org/10.1080/15567036.2010.551253

  6. Yadav, A. K., & Chandel, S. S. (2013). Tilt angle optimization to maximize incident solar radiation: A review. International Journal of Renewable and Sustainable Energy Reviews, 23(1), 503–513. https://doi.org/10.1016/j.rser.2013.02.027

    Article  Google Scholar 

  7. Breyer, C., & Schmid, J. (2010). Population density and area weighted solar irradiation: global overview on solar resource conditions for fixed tilted, one-axis and two-axes pv systems. 25th PVSEC, 4692–4709.

  8. Breyer, C., Bogdanov, D., Gulagi, A., Aghahosseini, A., Barbosa, L., Koskinen, O., Barasa, M., Caldera, U., Afanasyeva, S., Child, M., Farfan, J., & Vainikka, P. (2017). On the role of solar photovoltaics in global energy transition scenarios. Progress in Photovoltaics, 25(8), 727–745. https://doi.org/10.1002/pip.2885

    Article  Google Scholar 

  9. Uyan, M., & Doğmuş, O. L. (2023). An integrated GIS-based ANP analysis for selecting solar farm installation locations: Case study in Cumra region, Turkey. Environmental Modeling & Assessment, 28(1), 105–119. https://doi.org/10.1007/s10666-022-09870-1

    Article  Google Scholar 

  10. Abdallah, S., & Nijmeh, S. (2004). Two-Axes Sun Tracking System with PLC Control. Energy Conversion and Management, 45(11–12), 1931–1939. https://doi.org/10.1016/j.enconman.2003.10.007

    Article  Google Scholar 

  11. Koussa, M., Cheknane, A., Hadji, S., Haddadi, M., & Noureddine, S. (2011). Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions. International Journal of Applied Energy, 88(5), 1756–1771. https://doi.org/10.1016/j.apenergy.2010.12.002

    Article  Google Scholar 

  12. Bahrami, A., Okoye, C. O., & Atikol, U. (2016). The effect of latitude on the performance of different solar trackers in Europe and Africa. International Journal of Applied Energy, 177(C), 896–906. https://doi.org/10.1016/J.APENERGY.2016.05.103

  13. Hua, Z., Ma, C., Lian, J., Pang, X., & Yang, W. (2019). Optimum capacity allocation of multiple solar trackers and storage capacity for utility-scale photovoltaic plants considering output characteristics and complementary demand. International Journal of Applied Energy, 238(1), 721–733. https://doi.org/10.1016/j.apenergy.2019.01.099

    Article  Google Scholar 

  14. Eldin, S. A. S., Abd-Elhady, M. S., & Kandil, H. A. (2016). Feasibility of solar tracking systems for PV panels in hot and cold regions. International Journal of Renewable Energy, 85(1), 228–233. https://doi.org/10.1016/j.renene.2015.06.051

    Article  Google Scholar 

  15. Alkaff, S. A., Shamdasania, N. H., & Venkiteswaran, V. K. (2019). A study on implementation of PV tracking for sites proximate and away from the equator. Journal of Process Integration and Optimization for Sustainability, 3(3), 375–382. https://doi.org/10.1007/s41660-019-00086-7

    Article  Google Scholar 

  16. Nassar, Y. F., & Alsadi, & S. Y. (2019). Assessment of solar energy potential in Gaza Strip-Palestine sustainable. Energy Technologies and Assessments, 31(1), 318–328. https://doi.org/10.1016/j.seta.2018.12.010

    Article  Google Scholar 

  17. Safaraliev, M. K., Odinaev, I. N., Ahyoev, J. S., Rasulzoda, K. N., & Otashbekov, R. A. (2020). Energy potential estimation of the region’s solar radiation using a solar tracker. Applied Solar Energy, 56(1), 270–275. https://doi.org/10.3103/S0003701X20040118

    Article  Google Scholar 

  18. Akgül, B. A., Alisinanoğlu. F., Hasoğlu, M. F., & Özyazıcı, M. S. (2023). Maximization of solar radiation for fixed and tracking surfaces in Antalya Province of Türkiye. Tehnički Glasnik, 17(3), 47–58. https://doi.org/10.31803/tg-20220426082153

  19. Khan, T. M. Y., Elahi, M., Soudagar, M., Kanchan, M., Afzal, A., Banapurmath, N. R., Akram, N., Mane, S. D., & Shahapurkar, K. (2020). Optimum location and influence of tilt angle on performance of solar PV panels. Journal of Thermal Analysis and Calorimetry, 141(1), 511–532.

    Article  Google Scholar 

  20. Tchakounté, H., Fapi, C. B. N., Kamta, M., Djalo, H., & Woafo, P. (2021). Design, experimental implementation and performance comparison of two solar tracking approaches. Applied Solar Energy, 57(1), 44–58. https://doi.org/10.3103/S0003701X21010102

    Article  Google Scholar 

  21. Aghamohammadi, A., & Foulaadvand, M. E. (2023). Efficiency comparison between tracking and optimally fixed flat solar collectors. Scientific Reports 13(1), 12712. https://doi.org/10.1038/s41598-023-39892-y

  22. Liu, B. Y. H., & Jordan, R. C. (1960). The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Solar Energy, 4(3), 1–19. https://doi.org/10.1016/0038-092X(60)90062-1

    Article  ADS  Google Scholar 

  23. Collares-Pereira, M., & Rabl, A. (1979). Average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values. International Journal of Solar Energy, 22(2), 155–164. https://doi.org/10.1016/0038-092X(79)90100-2

    Article  Google Scholar 

  24. Klucher, T. M. (1979). Evaluation of models to predict insolation on tilted surfaces. International Journal of Solar Energy, 23(2), 111–114. https://doi.org/10.1016/0038-092X(79)90110-5

    Article  Google Scholar 

  25. Klein, S. A., & Theilacker, J. C. (1981). An algorithm for calculating monthly-average radiation on inclined surfaces. International Journal of Solar Energy Engineering, 103(1), 29–33. https://doi.org/10.1115/1.3266201

    Article  ADS  Google Scholar 

  26. Koronakis, P. S. (1986). On the choice of the angle of tilt for south-facing solar collectors in the Athens basin area. International Journal of Solar Energy, 36(3), 217–225. https://doi.org/10.1016/0038-092X(86)90137-4

    Article  Google Scholar 

  27. Skartveit, A., & Olseth, A. J. (1986). Modelling slope irradiance at high latitudes. Journal of Solar Energy, 36(4), 333–344. https://doi.org/10.1016/0038-092X(86)90151-9

    Article  Google Scholar 

  28. Reindl, D. T., Beckman, W. A., & Duffie, J. A. (1990). Evaluation of hourly tilted surface radiation models. Solar Energy, 45(1), 9–17. https://doi.org/10.1016/0038-092X(90)90061-G

    Article  ADS  Google Scholar 

  29. Jakhrani, A. Q., Samo, S. R., Rigit, A. R. H., & Shakeel, S. A. (2013). Selection of models for calculation of incident solar radiation on tilted surfaces. World Applied Sciences, 22(9), 1334–1343. https://doi.org/10.5829/idosi.wasj.2013.22.09.316

    Article  Google Scholar 

  30. Tang, R., & Wu, T. (2014). Optimum tilt-angles for solar collectors used in China. International Journal of Applied Energy, 79(3), 239–248. https://doi.org/10.1016/j.apenergy.2004.01.003

    Article  Google Scholar 

  31. Alboteanu, I. L., Bulucea, C. A., & Degeratu, S. (2015). Estimating solar irradiation absorbed by photovoltaic panels with low concentration located in Craiova, Romania. Sustainability, 7(3), 2644–2661. https://doi.org/10.3390/su7032644

    Article  Google Scholar 

  32. Nassar, Y. F., Abuhamoud, N. M., Miskeen, G. M., El-Khozondar, H. J., Alsadi, S. Y., & Ahwidi, O. M. (2022). Investigating the applicability of horizontal to tilted sky-diffuse solar irradiation transposition models for key Libyan cities. IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), https://doi.org/10.1109/MI-STA54861.2022.9837500

  33. Braun, J. E., & Mitchell, J. C. (1983). Solar geometry for fixed and tracking surfaces. Journal of Solar Energy, 31(5), 439–444. https://doi.org/10.1016/0038-092X(83)90046-4

    Article  Google Scholar 

  34. Michalsky, J. J. (1988). The Astronomical Almanac’s algorithm for the approximate solar position (1950–2050). Solar Energy, 40(3), 227–235. https://doi.org/10.1016/0038-092X(88)90045-X

    Article  ADS  Google Scholar 

  35. Perez, R., Ineichen, P., Seals, R., Michalsky, J., & Stewart, R. (1990). Modeling daylight availability and irradiance components from direct and global irradiance. International Journal of Solar Energy, 44(5), 271–289. https://doi.org/10.1016/0038-092X(90)90055-H

    Article  Google Scholar 

  36. Brownson, J. R. S. (2014). Solar energy conversion systems (1st ed.). Academic Press.

    Google Scholar 

  37. Miguel, H., Gomes, L. C., Campos, C. T., & Muniz, P. R. (2021). Estimation of daily energy gain of solar tracking surfaces based on geographic position. Journal of Revista Ifes Ciencia, 7(1), 1–14. https://doi.org/10.36524/ric.v7i1.940

  38. National Aeronautics and Space Administration-NASA, Atmospheric Science Data Center-ASDC. (2023). https://asdc.larc.nasa.gov/project/SSE

  39. Sawyer, R. L., Anderson, J. M., Foulks, E. L., Troxler, J. O., & Cox, R. W. (2009). Creating low-cost energy-management systems for homes using non-intrusive energy monitoring devices. IEEE Energy Conversion Congress and Exposition. https://doi.org/10.1109/ECCE.2009.5316132

    Article  Google Scholar 

  40. Lalita, V. P., Saibabu, C., & Prasad, S. G. R. K. D. (2013). Energy and comfort management in energy efficient buildings using RETSCREEN software-A case study analysis. International Journal of Engineering Research and Applications, 3(6), 378–381.

    Google Scholar 

  41. Sharma, D. K., Verma, V., & Singh, A. P. (2014). Review and analysis of solar photovoltaic software. International Journal of Current Engineering and Technology, 4(2), 725–731.

    Google Scholar 

  42. Liu, B. Y. H., & Jordan, R. C. (1962). Daily insolation on surfaces tilted towards the equator. Transactions ASHRAE, 67(1), 526–541.

    Google Scholar 

  43. Jakhrani, A. Q., Othman, A., Rigit, A. R. H., Samo, S. R., & Kamboh, S. A. (2012). Estimation of incident solar radiation on tilted surface by different empirical models. International Journal of Scientific and Research Publications, 2(12), 1–6.

    Google Scholar 

  44. Duffie, J. A., & Beckman, W. A. (2013). Solar engineering of thermal processes. Part I, Fundamentals 1, 4th Edition, New York, Wiley and Sons, USA.

  45. Kamil, B., Varınca, M., & Gonüllü, T. (2006). A study on solar energy potential in turkey and its use degree method and prevalence. International Solar and Hydrogen Energy Congress, 270–275.

  46. Taşkın, O., & Korucu, T. (2014). Solar energy potential and facilities of use in Kahramanmaras province. KSU Journal of Natural Sciences, 17(4), 12–16.

    Google Scholar 

  47. Republic of Turkey Ministry of Energy and Natural Resources (2022). Solar potential atlas (GEPA), global radiation and sunshine duration values of Turkey provinces. https://gepa.enerji.gov.tr/MyCalculator/

  48. Cooper, P. I. (1969). The absorption of radiation in solar stills. International Journal of Solar Energy, 12(3), 333–346. https://doi.org/10.1016/0038-092X(69)90047-4

    Article  Google Scholar 

  49. Iqbal, M. (1979). Average diffuse and beam radiation with hours of bright sunshine. International Journal of Solar Energy, 23(2), 169–173. https://doi.org/10.1016/0038-092X(79)90118-X

    Article  Google Scholar 

  50. Erbs, D. G., Klein, S. A., & Duffie, J. A. (1982). Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation. International Journal of Solar Energy, 28(4), 293–302. https://doi.org/10.1016/0038-092X(82)90302-4

    Article  Google Scholar 

  51. Nassar, Y. F., Alsadi, S. Y., El-Khozondar, H. J., & Refaat, S. S. (2022). Determination of the Most accurate horizontal to tilted sky-diffuse solar irradiation transposition model for the capital cities in MENA region. 3rd International Conference on Smart Grid and Renewable Energy (SGRE), https://doi.org/10.1109/SGRE53517.2022.9774146

  52. AR, D. (2021). Investigation of the effect of optimum tilt angle on yield in solar energy panels. BSEU Journal of Science, 8(1), 241–250. https://doi.org/10.35193/bseufbd.878795

  53. Şevik, S., Koçer, A., İnce, H., & Tombuş, F. E. (2021). Determination of optimum tilt angle of the solar collector and evaluation of the position of the existing buildings in terms of solar potential. Architectural Engineering and Design Management, 1(1), 1–17. https://doi.org/10.1080/17452007.2021.1926899

    Article  Google Scholar 

  54. Yağlı, H., & Koç, Y. (2020). Determination of optimum inclination angles of panels to be installed in solar generation for Gaziantep region. European Science and Technology, 19(1), 475–483. https://doi.org/10.31590/ejosat.733530

  55. Yolcan, O. O., & Köse, R. (2020). Finding optimum tilt angles of photovoltaic panels: Kütahya case study. International Journal of Energy Studies, 5(2), 89–105.

    Google Scholar 

  56. Akyürek, Z., Akyüz, A. Ö., & Güngör, A. (2019). Optimizing the tilt angle of solar panels to reduce carbon footprint: Case for the West Mediterranean region of Turkey. International Journal of Engineering Design and Technology, 1(1), 10–15.

    Google Scholar 

  57. Kallioğlu, M. A., Durmuş, A., & Karakaya, & H., Yılmaz, A. (2019). Empirical calculation of the optimum tilt angle for solar collectors in the northern hemisphere. Journal of Energy Sources, Part A: Recovery and Environmental Effects, 42(11), 1335–1358. https://doi.org/10.1080/15567036.2019.1663315

    Article  Google Scholar 

  58. Yıldırım, E., & Aktacir, M. A. (2019). Investigation of Azimuth and tilt angle effects on building integrated photovoltaic systems. International Journal of the Faculty of Engineering and Architecture of Gazi University, 34(2), 609–619. https://doi.org/10.17341/gazimmfd.416413

  59. Bakırcı, K., & Kaltakkıran, G. (2018). Determination of tilt angles of solar panels: A study on Gaziantep. 3rd International Energy & Engineering Congress Proceedings Book, 393–401.

  60. Kallioğlu, M. A., Genç, O., Ercan, U., & Karakaya, H. (2018). Creating the optimum panel inclination angles of the Southern Aegean region. International Journal of Advances in Science Engineering and Technology, 6(2), 58–62.

    Google Scholar 

  61. Tırmıkçı, C. A., & Yavuz, C. (2017). Determining optimum tilt angles of solar surfaces in Sakarya. Theoretical and Applied Climatology, 133(1), 15–22. https://doi.org/10.1007/s00704-017-2174-x

    Article  Google Scholar 

  62. Bakırcı, K. (2017). Investigation of solar energy potential to inclined surfaces. Environment Progress & Sustainable Energy, 37(1), 524–532. https://doi.org/10.1002/ep.12680

    Article  CAS  Google Scholar 

  63. Bilgili, M. E., & Dağtekin, M. (2017). Determination of appropriate slope angle and yearly energy difference in electricity production with photovoltaic battery. Gaziosmanpasa Journal of Scientific Research, 6(1), 156–167.

    Google Scholar 

  64. Kallioğlu, M. A., Ercan, U., Avcı, S. A., & Karakaya, H. (2017). Optimization of tit angle for solar panel. 2nd International Energy & Engineering Conference, 180–186.

  65. Arslanoglu, N. (2016). Optimization of tilt angle for solar collectors: A case study for Bursa, Turkey. International Journal of Energy and Power Engineering, 10(5), 590–593.

    Google Scholar 

  66. Yılmaz, A., Kocer, A., Yaka, F. I., & Güngör, A. (2016). Determination of optimum tilt angle on solar thermal collectors for Batman province of Turkey. Solar Conference & Exhibition, 674–678.

  67. Kocer, A., Şevik, S., & Güngür, A. (2015). Determination of solar collector optimum tilt angle for Ankara and districts, International Journal of Uludag University Faculty of Engineering, 21(1), 63–77. https://doi.org/10.17482/uujfe.80088

  68. Bawazir, R. O., Chakchak, J., Çetin, N. S., & Ulgen, K. (2016). Investigating the optimum tilt angle for solar receiver in Izmir. 3rd Int. Symposium on Environment and Morality, 809–817.

  69. Bakırcı, K. (2012). General models for optimum tilt angles of solar panels: Turkey case study. International Journal of Renewable and Sustainable Energy, 16(8), 6149–6159. https://doi.org/10.1016/j.rser.2012.07.009

    Article  Google Scholar 

  70. Kaçan, E., & Ülgen, K. (2012). Effect of collector slope and orientation on solar energy utilization. Journal of the Faculty of Eng. and Architecture of Gazi University, 27(4), 837–846.

  71. Nassar, Y. F., Alsadi, S. Y., El-Khozondar, H. J., Ismail, M. S., Al-Maghalseh, K., & M. T., Saed, J. A., Mushtaha, M. H., & Djerafi, T. (2022). Design of an isolated renewable hybrid energy system: A case study. Materials for Renewable and Sustainable Energy, 11(1), 225–240. https://doi.org/10.1007/s40243-022-00216-1

    Article  Google Scholar 

  72. Reindl, D. T., Beckman, W. A., & Duffie, J. A. (1990). Diffuse fraction correlations. Solar Energy, 45(1), 1–7. https://doi.org/10.1016/0038-092X(90)90060-P

    Article  ADS  Google Scholar 

  73. Ineichen, P. (2008). Comparison and validation of three global-to-beam irradiance models against ground measurements. Solar Energy, 82(1), 501–512. https://doi.org/10.1016/j.solener.2007.12.006

    Article  ADS  MathSciNet  Google Scholar 

  74. Benchrifa, M., Tadili, R., Idrissi, A., Essalhi, H., & Mechaqrane, A. (2021). Development of new models for the estimation of hourly components of solar radiation: Tests, comparisons, and application for the generation of a solar database in Morocco. International Journal of Photoenergy, ID, 8897818, 1–16.

    Google Scholar 

  75. Milosavljević, D. D., Kevkić, T. S., & Jovanović, S. J. (2022). Review and validation of photovoltaic solar simulation tools/software based on case study. Open Physics, 20(1), 431–451. https://doi.org/10.1515/phys-2022-0042

    Article  Google Scholar 

  76. Feuermann, D., & Zemel, A. (1992). Validation of models for global irradiance on inclined planes. Solar Energy, 48(1), 59–66. https://doi.org/10.1016/0038-092X(92)90177-C

    Article  ADS  Google Scholar 

  77. Oliveira, A. P., Escobedo, J. F., Machado, A. J., & Soares, J. (2002). Correlation models of diffuse solar radiation applied to the city of Sao Paulo, Brazil. Applied Energy, 71(1), 59–73. https://doi.org/10.1016/S0306-2619(01)00040-X

    Article  ADS  Google Scholar 

  78. Ahwidea, F., Spenab, A., & El-Kafrawyc, A. (2013). Correlation for the average daily diffuse fraction with clearness index and estimation of beam solar radiation and possible sunshine hours fraction in Sabha, Ghdames and Tripoli – Libya. APCBEE Procedia, 5(1), 208–220. https://doi.org/10.1016/j.apcbee.2013.05.037

    Article  Google Scholar 

  79. Nassar, Y. F., Belhaj, S., Alsadi, S. Y., & El-Khozondar, H. J. (2022). Analysis of the view factors in rooftop PV solar. 3rd International Conference on Smart Grid and Renewable Energy (SGRE), https://doi.org/10.1109/SGRE53517.2022.9774104

  80. Beyazit, N., Bulut, H., & Demirtaş, Y. (2017). Analysis of diffuse radiation models for horizontal surface according to measurement results. Journal of Polytechnic, 20(3), 557–563.

    Google Scholar 

  81. Balo, F. (2018). Investigation of solar energy potential for Çanakkale province with data analysis model. DUMF Journal of Engineering, 9(1), 143–152.

    Google Scholar 

  82. Emeksiz, C. (2020). The estimation of diffuse solar radiation on tilted surface using created new approaches with rational function modeling. Indian Journal of Physics, 94(1), 1311–1322. https://doi.org/10.1007/s12648-019-01573-w

    Article  ADS  CAS  Google Scholar 

  83. Orgill, J. F., & Hollands, K. G. T. (1977). Correlation equation for hourly diffuse radiation on a horizontal surface. Solar Energy, 19(4), 357–359. https://doi.org/10.1016/0038-092X(77)90006-8

    Article  ADS  Google Scholar 

  84. Çelik, A. N. (2006). Analysis of Ankara’s exposure to solar radiation: Evaluation of distributional parameters using long-term hourly measured global solar radiation data. Tubitak Turkish Journal of Engineering & Environmental Sciences, 30(1), 115–126.

    Google Scholar 

  85. Nassar, Y. F., & Samer, A. (2016). View factors of flat solar collectors array in flat, inclined, and step-like solar fields. Journal of Solar Energy Engineering, 138(6), 1–8. https://doi.org/10.1115/1.4034549

    Article  Google Scholar 

  86. Alsadi, S. Y., & Nassar, Y. F. (2017). Estimation of solar irradiance on solar fields: An analytical approach and experimental results. IEEE Transactions on Sustainable Energy, 8(4), 1601–1608. https://doi.org/10.1109/TSTE.2017.2697913

    Article  ADS  Google Scholar 

  87. Mansour, R. B., Mam, K., Alsulaiman, F. A., & Mansour, R. B. (2021). Optimizing the solar PV tilt angle to maximize the power output: A case study for Saudi Arabia. IEEE Access, 9(1), 15914–15928. https://doi.org/10.1109/ACCESS.2021.3052933

    Article  Google Scholar 

  88. Akgül, B. A., Alisinanoğlu F., & Özyazıcı, M. S. (2022). Optimization of tilt angle and maximization of solar radiation for fixed and tracking surfaces: A case study for Gaziantep, Turkey. Proceedings of the 2022 International Symposium on Energy Management and Sustainability. 187–195. https://doi.org/10.1007/978-3-031-30171-1_21

  89. Geliş K, Akyürek EF, Yoladı M (2020). Effect of panel position and angle on photovoltaic panel characteristics. Journal of the Institute of Science and Technology, 10(3), 1899–1908. https://doi.org/10.21597/jist.686478

  90. Kaygusuz, K. (2020). Calculation of solar radiation data on horizontal and tilted surfaces for Trabzon, Turkey. Journal of Engineering Research and Applied Science, 9(2), 1471–1476.

    Google Scholar 

  91. Çağlar, A. (2017). Determination of optimum tilt angle for cities in different degree-day regions. Süleyman Demirel University. Journal of Natural and Applied Sciences, 22(2), 849–854. https://doi.org/10.19113/sdufbed.94899

  92. Ayaz, R., Durusu, A., & AKCA, H. (2017). Determination of optimum tilt angle for different photovoltaic technologies considering ambient conditions: A case study for Burdur. Turkey. Journal of Solar Energy Engineering, 139(4), 139–145. https://doi.org/10.1115/1.4036412

    Article  Google Scholar 

  93. Özbay, H., Karafil, A., Onal, Y., Kesler, M., & Parmaksız, H. (2017). The monitoring of monthly, seasonal, and yearly optimum tilt angles by raspberry Pi card for Bilecik city, Turkey. Energy Procedia International Scientific Conference on Environmental and Climate Technologies, 113(1), 311–318.

  94. Karafil, A., Özbay H., Kesler, M., & Parmaksız, H. (2016). Calculation of optimum fixed tilt angle of pv panels depending on solar angles and comparison of the results with experimental study conducted in Bilecik, Turkey. 9th International Conference on Electrical and Electronics Engineering IEEE Xplore, 971–976. https://doi.org/10.1109/ELECO.2015.7394517

  95. Gebremedhen, Y. B. (2014). Determination of optimum fixed and adjustable tilt angles for solar collectors by using typical meteorological year data for Turkey. International Journal of Renewable Energy Research, 4(4), 924–928.

    Google Scholar 

  96. Ertekin, C., & Evrendilek, & F., Kulcu, R. (2008). Modeling spatio-temporal dynamics of optimum tilt angles for solar collectors in Turkey. International Journal of Sensors, 8(1), 2913–2931. https://doi.org/10.3390/s8052913

    Article  Google Scholar 

  97. Ülgen, K. (2007). Optimum tilt angle for solar collectors. International Journal of Energy Sources Part A: Recovery Utilization and Environmental Effects, 28(13), 1171–1180. https://doi.org/10.1080/00908310600584524

    Article  CAS  Google Scholar 

  98. Bakırcı, K. (2006). Variation of optimum collector inclination angle according to months. Journal of Engineer and Machine, 47(562), 26–30.

    Google Scholar 

  99. Akgül, B. A., Alisinanoğlu, F., & Özyazıcı, M. S. (2022) Obtaining maximum radiation by determining optimum tilt angles in large-Scale grid-connected PV plant, efficiency analysis of solar tracking systems: A case study for Sanliurfa, Turkey. International Journal of Electronics and Electrical Engineering, 10(7), 25–28.

  100. Beyazıt, N. I., Ünal, F., & Bulut, H. (2020). Modelling of the hourly horizontal solar diffuse radiation in Sanliurfa, Turkey. Thermal Science, 24(2A), 939–950.

    Article  Google Scholar 

  101. Aydemir, E.,& Toslak, F. (2019). Efficiency comparison of the fixed axis system with double axis movement solar tracking system. 4th Eurasian Conference on Civil and Environmental Engineering, 170–1174.

  102. Filik, T., Filik, Ü. B. (2017). Efficiency analysis of the solar tracking pv systems in Eskisehir Region”. Anadolu University Science and Technology, Applied Sciences and Engineering, 18(1), 209–217. https://doi.org/10.18038/aubtda.267116

  103. Öztürk, A., Alkan, S., Hasırcı, U., & Tosun, S. (2016). Experimental performance comparison of a 2-axis sun tracking system with a fixed system under the climatic conditions of Düzce, Turkey. Tubitak Turkish Electrical Engineering and Computer Sciences, 24(1), 4383–4390. https://doi.org/10.3906/elk-1404-344

  104. Üçgül, İ, & Şenol, R. (2016). PV and solar-tracking system for meteorology station in Isparta/Turkey. Phoenix, 1(1), 1–7.

    Google Scholar 

  105. Yılmaz, M., & Kentli, F. (2015). Increasing of electrical energy with solar tracking system at the region which has Turkey’s most solar energy potential. Journal of Clean Energy Technolpgies, 3(4), 287–290. https://doi.org/10.7763/JOCET.2015.V3.210

    Article  Google Scholar 

  106. Akkılıç, K., Ocak, Y. S., & Yılmaz, M. (2015). Analysing enhancement of electricity generating capacity with solar tracking system of the most sunning region of Turkey. International Journal of Clean Energy Technologies, 3(4), 291–295. https://doi.org/10.7763/JOCET.2015.V3.211

    Article  Google Scholar 

  107. Şenpınar, A., & Cebeci, M. (2012). Evaluation of power output for fixed and two-axis tracking PV arrays. Applied Energy, 92(1), 677–685. https://doi.org/10.1016/j.apenergy.2011.07.043

    Article  ADS  Google Scholar 

  108. Eke, R., & Şentürk, A. (2012). Comparison of a double-axis sun-tracking versus fixed PV system. Solar Energy, 86(1), 2665–2672. https://doi.org/10.1016/j.solener.2012.06.006

    Article  ADS  Google Scholar 

  109. Kıvrak, S., Gündüzalp, M., & Dinçer, F. (2012). Theoretical and experimental performance investigation of a two-axis solar tracker under the climatic condition of Denizli, Turkey. Journal of Przeglad Elektrotechniczny (Electrical Review), 88(2), 332–336.

    Google Scholar 

  110. Rustemli, S., Dincadam, F., & Demirtas, M. (2010). Performance comparison of the sun tracking system and fixed system in the application of heating and lightning. The Arabian Journal for Science and Engineering, 35(2B), 171–183.

    Google Scholar 

  111. Eke, R., Özden, S., Şentürk, A., Fleck, O., & Oktik, Ş. (2011). The largest double-axis sun tracking PV systems with electronic control and photosensors in Turkey. 25th European Photovoltaic Solar Energy Conference and Exhibition, 4744–4747.

  112. Sungur, C. (2009). Multi-axes sun-tracking system with the plc control for photovoltaic panels in Turkey. International Journal of Renewable Energy, 34(4), 1119–1125. https://doi.org/10.1016/j.renene.2008.06.020

    Article  Google Scholar 

  113. Kaçıra, M., Şimşek, M., Babür, Y., & Demirkol, S. (2004). Determining optimum tilt angles and orientations of PV panels in Şanlıurfa, Turkey. International Journal of Renewable Energy, 29(8), 1265–1275. https://doi.org/10.1016/j.renene.2003.12.014

    Article  Google Scholar 

  114. Kentli, F., & Yılmaz, M. (2017). Improving tracking efficiency of two-axis sun tracking systems. International Journal of Energy Harvesting and Energy Efficiency, 37(1), 179–203. https://doi.org/10.1007/978-3-319-49875-1_7

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection and analysis were performed by Batur Alp Akgül, Mustafa Sadettin Özyazıcı, Muhammet Fatih Hasoğlu and Bülent Haznedar. All tables and figures have been prepared as a result of collective work with the participation of all authors. The first draft of the manuscript was written by Batur Alp Akgül, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Batur Alp Akgül.

Ethics declarations

Ethics Approval

The authors declare that no ethical violation during the preparation of this manuscript.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 11 Studies on obtaining maximal radiation by determining optimal tilt angles of PV Surfaces in Türkiye
Table 12 Studies on radiation efficiency in solar tracking systems for Türkiye

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgül, B.A., Özyazıcı, M.S., Hasoğlu, M.F. et al. Investigation and Determination of Optimal Tilt Angles and Solar Radiation Gains for Fixed and Tracked South-Facing Solar Photovoltaic Surfaces in Provinces of Türkiye. Environ Model Assess 29, 101–123 (2024). https://doi.org/10.1007/s10666-023-09933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-023-09933-x

Keywords

Navigation