Skip to main content
Log in

Estimation of ideal tilt angle for solar-PV panel surfaces facing south: a case study for Najran City, Saudi Arabia

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

One of the most critical aspects of energy extraction is maximizing incident energy at solar module surfaces. Maximizing solar energy incidence on standard flat solar-PV modules’ flat surfaces is considered as the incident for the solar energy maximization issue. The angle at which photovoltaic (PV) panels are tilted influences how much solar energy falls on the panel surface. The ideal tilt angle is calculated by the sun’s position, latitude, and local topographical factors. The ideal angles for fixed-tilt solar-PV systems for city of Najran (18.00° N, 45.40° E), Saudi Arabia, are addressed in this article. Data on the horizontal solar radiation for the Najran city were collected from “Climate.OneBuilding.Org,” as well as measured by meteorological equipment by LSI located at engineering college, Najran University, Saudi Arabia. The fixed-tilt options for monthly, seasonally and annually have all been evaluated, and the best one has been chosen. Annual optimum tilt for Najran was found as 20.97°. The value of annual ideal angle was reasonably close to the respective location’s latitude. Average solar radiation for annual optimum tilt was found in the range of 20.04–26.01 MJ m–2-day. Average annual solar radiation gains estimated in contrast to horizontally installed solar-PV modules (based on monthly, seasonal, and yearly optimal tilts) were 9.56, 8.08 and 3.32%. The surface at seasonal and yearly optimal tilts compared with optimum monthly tilt was projected to lose 1.36 and 5.70% energy, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu D, Wu J, Wang W, Gu B. Optimal performance of hybrid energy system in the presence of electrical and heat storage systems under uncertainties using stochastic p-robust optimization technique. Sustain Cities Soc. 2022;83:103935.

    Google Scholar 

  2. Qiu L, He L, Lu H, Liang D. Pumped hydropower storage potential and its contribution to hybrid renewable energy co-development: a case study in the Qinghai-Tibet Plateau. J Energy Storage. 2022;51:104447.

    Google Scholar 

  3. Zhong C, Li H, Zhou Y, Lv Y, Chen J, Li Y. Virtual synchronous generator of PV generation without energy storage for frequency support in autonomous microgrid. Int J Electr Power Energy Syst. 2022;134:107343.

    Google Scholar 

  4. Wang H, Hou K, Zhao J, Yu X, Jia H, Mu Y. Planning-Oriented resilience assessment and enhancement of integrated electricity-gas system considering multi-type natural disasters. Appl Energy. 2022;315:118824.

    Google Scholar 

  5. Kalbasi R, Jahangiri M, Mosavi A, Dehshiri SJ, Dehshiri SS, Ebrahimi S, Etezadi ZA, Karimipour A. Finding the best station in Belgium to use residential-scale solar heating, One-year dynamic simulation with considering all system losses: economic analysis of using ETSW. Sustain Energy Technol Assess. 2021;45:101097. https://doi.org/10.1016/j.seta.2021.101097.

    Article  Google Scholar 

  6. Liu J, Yin Y, Wang K, Wei P, Lu H, Song C, Liang Q, Huang W. Domain size control in all-polymer solar cells. Iscience. 2022;25(4):104090.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Usman M, Balsalobre-Lorente D, Jahanger A, Ahmad P. Pollution concern during globalization mode in financially resource-rich countries: do financial development, natural resources, and renewable energy consumption matter? Renewable Energy. 2022;183:90–102.

    Google Scholar 

  8. G. Solar (2021) SolarGIS data validation for the Kingdom of Saudi Arabia.

  9. Qiu L, He L, Lu H, Liang D. Systematic potential analysis on renewable energy centralized co-development at high altitude: A case study in Qinghai-Tibet plateau. Energy Convers Manage. 2022;267:115879. https://doi.org/10.1016/j.enconman.2022.115879.

    Article  Google Scholar 

  10. Gholipour S, Afrand M, Kalbasi R. Improving the efficiency of vacuum tube collectors using new absorbent tubes arrangement: introducing helical coil and spiral tube adsorbent tubes. Renewable Energy. 2020;151:772–81. https://doi.org/10.1016/j.renene.2019.11.068.

    Article  Google Scholar 

  11. Sheikholeslami M, Jafaryar M, Shafee A, Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. J Clean Product. 2020;261:121206.

    CAS  Google Scholar 

  12. Dabiri S, Khodabandeh E, Poorfar AK, Mashayekhi R, Toghraie D, Zade SAA. Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Energy. 2018;153:17–26.

    Google Scholar 

  13. Alqaed S, Mustafa J, Almehmadi FA. Design and energy requirements of a photovoltaic-thermal powered water desalination plant for the middle east. Int J Environ Res Public Health. 2021;18(3):1001.

    PubMed  PubMed Central  Google Scholar 

  14. Alqaed S, Mustafa J, Sharifpur M, Alharthi MA. Numerical simulation and artificial neural network modeling of exergy and energy of parabolic trough solar collectors equipped with innovative turbulators containing hybrid nanofluids. J Thermal Anal Calorim. 2022;56:1–16. https://doi.org/10.1007/s10973-022-11538-7.

    Article  CAS  Google Scholar 

  15. Mustafa J, Alqaed S, Sharifpur M. Incorporating nano-scale material in solar system to reduce domestic hot water energy demand. Sustain Energy Technol Assessm. 2022;49:101735.

    Google Scholar 

  16. Mustafa J, Husain S, Khan UA, Akhtar MM. Prediction of diffuse solar radiation using machine learning models based on sunshine period and sky-clearness index for the humid-subtropical climate of India. Environm Progress Sustain Energy. 2022;29:e13973.

    Google Scholar 

  17. Pazheri FR, Malik NH, Al-Arainy AA, Ottukulotk S, Othman MF, Al-Ammar EA, Imthias Ahamed TP. Use of renewable energy sources in Saudi Arabia through smart grid. J Energy Power Eng. 2012;6(7):1065.

    Google Scholar 

  18. Yakup MA, Malik AQ. Optimum tilt angle and orientation for solar collector in Brunei Darussalam. Renewable Energy. 2001;24(2):223–34.

    CAS  Google Scholar 

  19. Mohandes M, Rehman S, Halawani T. Estimation of global solar radiation using artificial neural networks. Renewable Energy. 1998;14(1–4):179–84.

    Google Scholar 

  20. Jamil Ahmad M, Tiwari GN. Optimization of tilt angle for solar collector to receive maximum radiation. Open Renew Energy J. 2009;2(1):19–24.

    Google Scholar 

  21. Ahmad MJ, Tiwari G. Optimum tilt angle for solar collectors used in India. Int J Ambient Energy. 2009;30(2):73–8.

    Google Scholar 

  22. Benghanem M. Optimization of tilt angle for solar panel: case study for Madinah, Saudi Arabia. Appl Energy. 2011;88(4):1427–33.

    Google Scholar 

  23. Stanciu D, Stanciu C, Paraschiv I. Mathematical links between optimum solar collector tilts in isotropic sky for intercepting maximum solar irradiance. J Atmos Solar-Terrestrial Phys. 2016;137:58–65.

    Google Scholar 

  24. Bari S. Optimum orientation of domestic solar water heaters for the low latitude countries. Energy Convers Manage. 2001;42(10):1205–14.

    Google Scholar 

  25. Duffie JA, Beckman WA, Blair N. Solar engineering of thermal processes, photovoltaics and wind. UK: John Wiley & Sons; 2020.

    Google Scholar 

  26. Zang H, Guo M, Wei Z, Sun G. Determination of the optimal tilt angle of solar collectors for different climates of China. Sustainability. 2016;8(7):654.

    Google Scholar 

  27. Abdolzadeh M, Mehrabian M. The optimal slope angle for solar collectors in hot and dry parts of Iran. Energy Sources, part A: Recovery, Utilization, Environ Effects. 2012;34(6):519–30.

    Google Scholar 

  28. Lave M, Kleissl J. Optimum fixed orientations and benefits of tracking for capturing solar radiation in the continental United States. Renewable Energy. 2011;36(3):1145–52.

    Google Scholar 

  29. Ibrahim D. Optimum tilt angle for solar collectors used in Cyprus. Renewable Energy. 1995;6(7):813–9.

    Google Scholar 

  30. Soulayman S, Hammoud M. Optimum tilt angle of solar collectors for building applications in mid-latitude zone. Energy Convers Manage. 2016;124:20–8.

    Google Scholar 

  31. Altarawneh IS, Rawadieh SI, Tarawneh MS, Alrowwad SM, Rimawi F. Optimal tilt angle trajectory for maximizing solar energy potential in Ma’an area in Jordan. J Renew Sustain Energy. 2016;8(3):033701.

    Google Scholar 

  32. Khahro SF, Tabbassum K, Talpur S, Alvi MB, Liao X, Dong L. Evaluation of solar energy resources by establishing empirical models for diffuse solar radiation on tilted surface and analysis for optimum tilt angle for a prospective location in southern region of Sindh, Pakistan. Int J Electr Power Energy Syst. 2015;64:1073–80.

    Google Scholar 

  33. Krishna SM, Mohan V, Reshma Suresh MP, Singh JG. A generalized approach for enhanced solar energy harvesting using stochastic estimation of optimum tilt angles: a case study of Bangkok City. Green. 2015;5(1–6):95–107.

    Google Scholar 

  34. Calabrò E. An algorithm to determine the optimum tilt angle of a solar panel from global horizontal solar radiation. J Renew Energy. 2013;2013:307547. https://doi.org/10.1155/2013/307547.

    Article  Google Scholar 

  35. Jafarkazemi F, Saadabadi SA. Optimum tilt angle and orientation of solar surfaces in Abu Dhabi, UAE. Renewable Energy. 2013;56:44–9.

    Google Scholar 

  36. Shukla K, Rangnekar S, Sudhakar K. Comparative study of isotropic and anisotropic sky models to estimate solar radiation incident on tilted surface: a case study for Bhopal, India. Energy Rep. 2015;1:96–103.

    Google Scholar 

  37. Pandey CK, Katiyar A. A note on diffuse solar radiation on a tilted surface. Energy. 2009;34(11):1764–9.

    Google Scholar 

  38. Pandey CK, Katiyar A. A comparative study of solar irradiation models on various inclined surfaces for India. Appl Energy. 2011;88(4):1455–9.

    Google Scholar 

  39. Ertekin C, Evrendilek F, Kulcu R. Modeling spatio-temporal dynamics of optimum tilt angles for solar collectors in Turkey. Sensors. 2008;8(5):2913–31.

    PubMed  PubMed Central  Google Scholar 

  40. Shariah A, Al-Akhras M-A, Al-Omari I. Optimizing the tilt angle of solar collectors. Renewable Energy. 2002;26(4):587–98.

    Google Scholar 

  41. Jamil B, Siddiqui AT, Akhtar N. Estimation of solar radiation and optimum tilt angles for south-facing surfaces in Humid Subtropical Climatic Region of India. Eng Sci Technol Int J. 2016;19(4):1826–35.

    Google Scholar 

  42. Bakirci K. Investigation of solar energy potential on inclined surfaces. Environ Progress Sustain Energy. 2018;37(1):524–32.

    CAS  Google Scholar 

  43. Hartner M, Ortner A, Hiesl A, Haas R. East to west–The optimal tilt angle and orientation of photovoltaic panels from an electricity system perspective. Appl Energy. 2015;160:94–107.

    Google Scholar 

  44. Handoyo EA, Ichsani D. The optimal tilt angle of a solar collector. Energy Procedia. 2013;32:166–75.

    Google Scholar 

  45. Kazem HA, Khatib T, Alwaeli AA (2013) Optimization of photovoltaic modules tilt angle for Oman. In: 2013 IEEE 7th International Power Engineering and Optimization Conference (PEOCO), 2013: IEEE, pp. 703–707.

  46. Jafari S, Javaran EJ. An optimum slope angle for solar collector systems in kerman using a new model for diffuse solar radiation. Energy Sources, Part A: Recovery, Utilization, Environ Effects. 2012;34(9):799–809.

    Google Scholar 

  47. Tamimi A, Sowayan A. Optimum tilt angles of flat-plate solar collectors at Riyadh, Kingdom of Saudi Arabia. Energy Sources, Part A: Recovery, Utilization, Environm Effects. 2012;34(13):1213–21.

    Google Scholar 

  48. Jafarkazemi F, Ali Saadabadi S, Pasdarshahri H. The optimum tilt angle for flat-plate solar collectors in Iran. J Renew Sustain Energy. 2012;4(1):013118.

    Google Scholar 

  49. Moghadam H, Tabrizi FF, Sharak AZ. Optimization of solar flat collector inclination. Desalination. 2011;265(1–3):107–11.

    CAS  Google Scholar 

  50. Eke AB (2011) Prediction of optimum angle of inclination for flat plate solar collector in Zaria, Nigeria. Agricultural Eng Int: CIGR J, 13(4).

  51. Mustafa J, Alqaed S, Almehmadi FA, and Jamil B, (2022) Development and comparison of parametric models to predict global solar radiation: a case study for the southern region of Saudi Arabia. J Thermal Anal Calorimet, pp. 1–31, 2022.

  52. El-Sebaii A, Al-Hazmi F, Al-Ghamdi A, Yaghmour SJ. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia. Appl Energy. 2010;87(2):568–76.

    Google Scholar 

  53. Mehleri E, Zervas P, Sarimveis H, Palyvos J, Markatos N. Determination of the optimal tilt angle and orientation for solar photovoltaic arrays. Renewable Energy. 2010;35(11):2468–75.

    Google Scholar 

  54. Bakirci K. General models for optimum tilt angles of solar panels: Turkey case study. Renew Sustain Energy Rev. 2012;16(8):6149–59.

    Google Scholar 

  55. Li DH, Lam TN. Determining the optimum tilt angle and orientation for solar energy collection based on measured solar radiance data. Int J Photoenergy. 2007;2007:85402. https://doi.org/10.1155/2007/85402.

    Article  Google Scholar 

  56. Elminir HK, Ghitas AE, El-Hussainy F, Hamid R, Beheary M, Abdel-Moneim KM. Optimum solar flat-plate collector slope: case study for Helwan, Egypt. Energy Convers Manage. 2006;47(5):624–37.

    CAS  Google Scholar 

  57. Tang R, Wu T. Optimal tilt-angles for solar collectors used in China. Appl Energy. 2004;79(3):239–48.

    Google Scholar 

  58. Skeiker K. Optimum tilt angle and orientation for solar collectors in Syria. Energy Convers Manage. 2009;50(9):2439–48.

    Google Scholar 

  59. Siraki AG, Pillay P. Study of optimum tilt angles for solar panels in different latitudes for urban applications. Sol Energy. 2012;86(6):1920–8.

    Google Scholar 

  60. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorol Z. 2006;15(3):259–63. https://doi.org/10.1127/0941-2948/2006/0130.

    Article  Google Scholar 

  61. Yang J, Liu H, Ma K, Yang B, Guerrero JM (2022) An optimization strategy of price and conversion factor considering the coupling of electricity and gas based on Three-Stage Game. IEEE Trans Autom Sci Eng.

  62. Xu Y, Zhang H, Yang F, Tong L, Yan D, Yang Y, Ren J, Ma L, Wang Y (2022) State of charge estimation of supercapacitors based on multi‐innovation unscented Kalman filter under a wide temperature range. Int J Energy Res., 2022.

  63. Xie X, Chen D. Data-driven dynamic harmonic model for modern household appliances. Appl Energy. 2022;312:118759.

    Google Scholar 

  64. Leon JI, Vazquez S, Sanchez JA, Portillo R, Franquelo LG, Carrasco JM, Dominguez E. Conventional space-vector modulation techniques versus the single-phase modulator for multilevel converters. IEEE Trans Indus Electron. 2009;57(7):2473–82.

    Google Scholar 

  65. Yu D, Ma Z, Wang R. Efficient smart grid load balancing via Fog and cloud computing. Math Problems Eng. 2022;2022:1–11.

    Google Scholar 

  66. Cooper P. The absorption of radiation in solar stills. Sol Energy. 1969;12(3):333–46.

    Google Scholar 

  67. Martínez-Durbán M, Zarzalejo L, Bosch J, Rosiek S, Polo J, Batlles F. Estimation of global daily irradiation in complex topography zones using digital elevation models and meteosat images: comparison of the results. Energy Convers Manage. 2009;50(9):2233–8.

    Google Scholar 

  68. Li ZX, Al-Rashed AAAA, Rostamzadeh M, Kalbasi R, Shahsavar A, Afrand M. Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: Effects of repositioning, thermophysical properties and thickness of PCM. Energy Convers Manage. 2019;195:43–56. https://doi.org/10.1016/j.enconman.2019.04.075.

    Article  CAS  Google Scholar 

  69. Kalbasi R. Usefulness of PCM in building applications focusing on envelope heat exchange – Energy saving considering two scenarios. Sustain Energy Technol Assess. 2022;50:101848. https://doi.org/10.1016/j.seta.2021.101848.

    Article  Google Scholar 

  70. Liu B and Jordan R. (1962) Daily insolation on surfaces Tilted Toward the equator-Trans. ed: ASHRAE

  71. Diez-Mediavilla M, De Miguel A, Bilbao J. Measurement and comparison of diffuse solar irradiance models on inclined surfaces in Valladolid (Spain). Energy Convers Manage. 2005;46(13–14):2075–92.

    Google Scholar 

  72. Hay JE. Calculation of monthly mean solar radiation for horizontal and inclined surfaces. Sol Energy. 1979;23(4):301–7.

    Google Scholar 

  73. Kamali GA, Moradi I, Khalili A. Estimating solar radiation on tilted surfaces with various orientations: a study case in Karaj (Iran). Theor Appl Climatol. 2006;84(4):235–41.

    Google Scholar 

  74. Klucher TM. Evaluation of models to predict insolation on tilted surfaces. Sol Energy. 1979;23(2):111–4.

    Google Scholar 

  75. Muneer T, Saluja G. A brief review of models for computing solar radiation on inclined surfaces. Energy Conversion Manag. 1985;25(4):443–58.

    Google Scholar 

  76. Notton G, Poggi P, Cristofari C. Predicting hourly solar irradiations on inclined surfaces based on the horizontal measurements: performances of the association of well-known mathematical models. Energy Convers Manage. 2006;47(13–14):1816–29.

    Google Scholar 

  77. Perez R, Ineichen P, Seals R, Michalsky J, Stewart R. Modeling daylight availability and irradiance components from direct and global irradiance. Sol Energy. 1990;44(5):271–89.

    Google Scholar 

  78. Liu BY, Jordan RC. The interrelationship and characteristic distribution of direct, diffuse and total solar radiation. Sol Energy. 1960;4(3):1–19.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under Najran Region Research Program Funding program grant code (NU/NAR/SERC/11/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawed Mustafa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqaed, S., Mustafa, J., Almehmadi, F.A. et al. Estimation of ideal tilt angle for solar-PV panel surfaces facing south: a case study for Najran City, Saudi Arabia. J Therm Anal Calorim 148, 8641–8654 (2023). https://doi.org/10.1007/s10973-022-11812-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11812-8

Keywords

Navigation