Skip to main content

Advertisement

Log in

Stochastic Multi-species MSY to Achieve Ecological-Economic Sustainability of a Coral Reef Fishery System in French Polynesia

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper investigates the ecological-economic sustainability of coral reef socio-ecological systems under fishing and environmental pressures. To achieve this, a dynamic, spatially explicit, multi-species, multi-fleet fisheries model is developed. Stochastic environmental shocks are assumed to alter coral cover and consequently the entire coral reef social-ecological system. The model is calibrated using ecological, socio-economic and environmental data in French Polynesia. Four exploratory fishing strategies and a goal-seeking strategy entitled Stochastic Multi-Species Maximum Sustainable Yield (SMMSY) are compared in terms of ecological-economic outcomes and sustainability of the socio-ecological system. The SMMSY turns out to promote ecological-economic sustainability. It is characterised by a global increase in fishing effort pointing to the relative current under-exploitation of the fishery. SMMSY balances the trophic level of catches after natural shocks and sustains the fundamental herbivore grazing process. SMMSY strategies are also more diversified in terms of temporality, gears, spatial distribution of fishing and target species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data and algorithms used in this study can be found at the Google Drive of the following mail address: these.algorithme.al@gmail.com with the password: eco-viability.

Notes

  1. Less than 1% between 2007 and 2017 [81].

  2. More than 50% in average according to social surveys.

  3. A tui is “A wreath of fish consisting of one or more species, tied together with plant fibre drawn through their gills and then suspended on a metal holder, which forms the sales unit.” [60].

  4. Around 12€.

  5. \(K_{lagoon}\) equals 50% for the lagoon and \(K_{reef}\) is set at 98% for the fore reef.

  6. Basically, all things equal, the higher the coral cover, the less predation there is and the more herbivores there are.

  7. Historical Labor (2005–2016) is presented in Table 4. Estimated labor is assumed to grow linearly following an estimated demographic rate noted \(l_{f}\): \(L_{f}(t+1)=l_{f}*L_{f}(t_{h})\) with \(t_{h}=2016.\)

  8. http://www.theses.fr/2020BORD0214.

  9. PGEM (Plan de Gestion de l’Espace Maritime) in French — [82].

  10. http://www.criobe.pf/.

  11. https://www.scilab.org/.

  12. The biological dimension embeds these phenomena through a forcing of the coral cover in 2006, 2007, 2008 (COTS) and 2010 (cyclone OLI) to its historical and observed % of cover

    $$x_{1,reef}(t_{shock})=x_{1,reef}^{hist}(t_{shock})\quad with \quad t_{shocks}=[2007,2008,2009,2010].$$
  13. When a relevant natural shock occurs, coral cover on the fore reef decreases of 70% in average and it happens once every decade in average for the last 30 years.

  14. The Closure scenario displays an empty radar plot except for the Share of Herbivores Biomass (51%) and as a consequence is not plotted here.

References

  1. Bellwood, D. R., Hughes, T. P., Folke, C., & Nyström, M. (2004). Confronting the coral reef crisis. Nature, 429(6994), 827.

    Article  CAS  Google Scholar 

  2. Nyström, M., Folke, C., & Moberg, F. (2000). Coral reef disturbance and resilience in a human-dominated environment. Trends in Ecology & Evolution, 15(10), 413–417.

    Article  Google Scholar 

  3. Adjeroud, M., Chancerelle, Y., & Lisonde Loma, T. (2010). Vulnérabilité et résilience des récifs coralliens de polynésie française face aux perturbations de grande ampleur. Le Courrier de la nature 252, 20–25.

  4. Wilson, S., Graham, N., & Polunin, N. V. (2007). Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Marine Biology, 151(3), 1069–1076.

    Article  Google Scholar 

  5. Cinner, J., McClanahan, T., Wamukota, A., Darling, E., Humphries, A., Hicks, C., Huchery, C., Marshall, N., Hempson, T., Graham, N., et al. (2013). Social-ecological vulnerability of coral reef fisheries to climatic shocks. FAO Fisheries and Aquaculture Circular, (1082), I.

  6. Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R., Zeller, D., & Pauly, D. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1), 24–35.

    Article  Google Scholar 

  7. FAO. (2018). The State of world fisheries and aquaculture - meeting the sustainable development goals.

  8. Sumaila, U. R., Cheung, W. W., Lam, V. W., Pauly, D., & Herrick, S. (2011). Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change, 1(9), 449–456.

    Article  Google Scholar 

  9. Doyen, L., Béné, C., Bertignac, M., Blanchard, F., Cissé, A. A., Dichmont, C., Gourguet, S., Guyader, O., Hardy, P.-Y., Jennings, S., et al. (2017). Ecoviability for ecosystem-based fisheries management. Fish and Fisheries, 18(6), 1056–1072.

    Article  Google Scholar 

  10. Link, J. S., Thébaud, O., Smith, D. C., Smith, A. D., Schmidt, J., Rice, J., Poos, J. J., Pita, C., Lipton, D., Kraan, M., et al. (2017). Keeping humans in the ecosystem.

  11. NOAA. (2007). Magnuson-Stevens fishery conservation and management act.

  12. Pikitch, E., Santora, C., Babcock, E., Bakun, A., Bonfil, R., Conover, D., Dayton, P., Doukakis, P., Fluharty, D., Heneman, B., et al. (2004). Ecosystem-based fishery management. Science, 305(5682), 346–347.

    Article  CAS  Google Scholar 

  13. Spence, M. A., Blanchard, J. L., Rossberg, A. G., Heath, M. R., Heymans, J. J., Mackinson, S., Serpetti, N., Speirs, D. C., Thorpe, R. B., & Blackwell, P. G. (2018). A general framework for combining ecosystem models. Fish and Fisheries, 19(6), 1031–1042.

    Article  Google Scholar 

  14. Legović, T., & Geček, S. (2010). Impact of maximum sustainable yield on independent populations. Ecological Modelling, 221(17), 2108–2111.

    Article  Google Scholar 

  15. Walters, C. J., Christensen, V., Martell, S. J., & Kitchell, J. F. (2005). Possible ecosystem impacts of applying MSY policies from single-species assessment. ICES Journal of Marine Science, 62(3), 558–568.

    Article  Google Scholar 

  16. Clark, C. W. (2010). Mathematical bioeconomics: The mathematics of conservation, vol. 91. John Wiley & Sons.

  17. Dichmont, C., Pascoe, S., Kompas, T., Punt, A. E., & Deng, R. (2010). On implementing maximum economic yield in commercial fisheries. Proceedings of the National Academy of Sciences, 107(1), 16–21.

    Article  CAS  Google Scholar 

  18. Hoshino, E., Pascoe, S., Hutton, T., Kompas, T., & Yamazaki, S. (2018). Estimating maximum economic yield in multispecies fisheries: a review. Reviews in Fish Biology and Fisheries, 28(2), 261–276.

    Article  Google Scholar 

  19. Guillen, J., Macher, C., Merzéréaud, M., Bertignac, M., Fifas, S., & Guyader, O. (2013). Estimating MSY and MEY in multi-species and multi-fleet fisheries, consequences and limits: an application to the bay of Biscay mixed fishery. Marine Policy, 40, 64–74.

    Article  Google Scholar 

  20. Mueter, F. J., & Megrey, B. A. (2006). Using multi-species surplus production models to estimate ecosystem-level maximum sustainable yields. Fisheries Research, 81(2), 189–201.

    Article  Google Scholar 

  21. Clark, C. W. (2006). The worldwide crisis in fisheries: Economic models and human behavior. Cambridge University Press.

  22. Tromeur, E., & Doyen, L. (2019). Optimal harvesting policies threaten biodiversity in mixed fisheries. Environmental Modeling & Assessment, 24(4), 387–403.

    Article  Google Scholar 

  23. Tromeur, E., Doyen, L., Tarizzo, V., Little, L. R., Jennings, S., & Thébaud, O. (2021). Risk averse policies foster bio-economic sustainability in mixed fisheries. Ecological Economics, 190,.

    Article  Google Scholar 

  24. De Lange, C. (2013). Fishery forced to close as shrimp stocks collapse.

  25. Lopes, P. F., Pennino, M. G., & Freire, F. (2018). Climate change can reduce shrimp catches in equatorial Brazil. Regional Environmental Change, 18(1), 223–234.

    Article  Google Scholar 

  26. Stock, C. A., Alexander, M. A., Bond, N. A., Brander, K. M., Cheung, W. W., Curchitser, E. N., Delworth, T. L., Dunne, J. P., Griffies, S. M., Haltuch, M. A., et al. (2011). On the use of IPCC-class models to assess the impact of climate on living marine resources. Progress in Oceanography, 88(1–4), 1–27.

    Article  Google Scholar 

  27. Holsman, K., Haynie, A., Hollowed, A., Reum, J., Aydin, K., Hermann, A., Cheng, W., Faig, A., Ianelli, J., Kearney, K., et al. (2020). Ecosystem-based fisheries management forestalls climate-driven collapse. Nature Communications, 11(1), 1–10.

    Article  CAS  Google Scholar 

  28. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.

    Article  Google Scholar 

  29. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F., De Siqueira, M. F., Grainger, A., Hannah, L., et al. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.

    Article  CAS  Google Scholar 

  30. Cheung, B. K.-S., Choy, K., Li, C.-L., Shi, W., & Tang, J. (2008). Dynamic routing model and solution methods for fleet management with mobile technologies. International Journal of Production Economics, 113(2), 694–705.

    Article  Google Scholar 

  31. Zhao, W., Chao, H., Zhang, L., Ta, N., Zhao, Y., Li, B., Zhang, K., Guan, Z., Hou, D., Chen, K., et al. (2019). Integration of QTL mapping and gene fishing techniques to dissect the multi-main stem trait in rapeseed (Brassica Napus l.). Frontiers in Plant Science, 10, 1152.

  32. Brander, K. M. (2007). Global fish production and climate change. Proceedings of the National Academy of Sciences, 104(50), 19709–19714.

    Article  CAS  Google Scholar 

  33. Cheung, W. W., Bruggeman, J., & Butenschön, M. (2019). Projected changes in global and national potential marine fisheries catch under climate change scenarios in the twenty-first century. Impacts of Climate Change on Fisheries and Aquaculture, 63.

  34. Diop, B., Sanz, N., Duplan, Y. J. J., Blanchard, F., Pereau, J.-C., Doyen, L., et al. (2018). Maximum economic yield fishery management in the face of global warming. Ecological Economics, 154, 52–61.

    Article  Google Scholar 

  35. Lagarde, A., Doyen, L., Ahad-Cissé, A., Caill-Milly, N., Gourguet, S., Le Pape, O., Macher, C., Morandeau, G., & Thébaud, O., et al. (2018). How does MMEY mitigate the bioeconomic effects of climate change for mixed fisheries. Ecological Economics, 154, 317–332.

    Article  Google Scholar 

  36. Cheung, W. W., Reygondeau, G., & Frölicher, T. L. (2016). Large benefits to marine fisheries of meeting the 1.5 c global warming target. Science 354(6319), 1591–1594.

  37. Gomes, H., Kersulec, C., Doyen, L., Blanchard, F., Cisse, A. A., & Sanz, N. (2021). The major roles of climate warming and ecological competition in the small-scale coastal fishery in French Guiana. Environmental Modeling & Assessment, 1–21.

  38. Fulton, E. A., Smith, A. D., Smith, D. C., & van Putten, I. E. (2011). Human behaviour: the key source of uncertainty in fisheries management. Fish and Fisheries, 12(1), 2–17.

    Article  Google Scholar 

  39. Halpern, B. S., Walbridge, S., Selkoe, K. A., Kappel, C. V., Micheli, F., D’Agrosa, C., Bruno, J. F., Casey, K. S., Ebert, C., Fox, H. E., et al. (2008). A global map of human impact on marine ecosystems. Science, 319(5865), 948–952.

    Article  CAS  Google Scholar 

  40. Boschetti, F., Prunera, K., Vanderklift, M. A., Thomson, D. P., Babcock, R. C., Doropoulos, C., Cresswell, A. & Lozano-Montes, H. (2020). Information-theoretic measures of ecosystem change, sustainability, and resilience. ICES Journal of Marine Science, 77(4), 1532–1544.

    Article  Google Scholar 

  41. Thébaud, O., Link, J. S., Kohler, B., Kraan, M., López, R., Poos, J. J., Schmidt, J. O., & Smith, D. C. (2017). Managing marine socio-ecological systems: picturing the future. ICES Journal of Marine Science, 74(7), 1965–1980.

    Article  Google Scholar 

  42. Plagányi, ÉE., Punt, A. E., Hillary, R., Morello, E. B., Thébaud, O., Hutton, T., Pillans, R. D., Thorson, J. T., Fulton, E. A., Smith, A. D., et al. (2014). Multispecies fisheries management and conservation: tactical applications using models of intermediate complexity. Fish and Fisheries, 15(1), 1–22.

    Article  Google Scholar 

  43. Mumby, P. J. (2006). The impact of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs. Ecological Applications, 16(2), 747–769.

    Article  Google Scholar 

  44. Dubois, M., Gascuel, D., Coll, M., & Claudet, J. (2017). Recovery debts can be revealed by ecosystem network-based approaches. Ecosystems, 1–19.

  45. Hardy, P.-Y., Béné, C., Doyen, L., & Schwarz, A.-M. (2013). Food security versus environment conservation: A case study of solomon islands’ small-scale fisheries. Environmental Development, 8, 38–56.

    Article  Google Scholar 

  46. Doyen, L., De Lara, M., Ferraris, J., & Pelletier, D. (2007). Sustainability of exploited marine ecosystems through protected areas: a viability model and a coral reef case study. Ecological Modelling, 208(2), 353–366.

    Article  Google Scholar 

  47. Doyen, L., Armstrong, C., Baumgärtner, S., Béné, C., Blanchard, F., Cissé, A., Cooper, R., Dutra, L., Eide, A., Freitas, D., et al. (2019). From no whinge scenarios to viability tree. Ecological Economics, 163, 183–188.

    Article  Google Scholar 

  48. Grafton, R. Q., Doyen, L., Béné, C., Borgomeo, E., Brooks, K., Chu, L., Cumming, G. S., Dixon, J., Dovers, S., Garrick, D., et al. (2019). Realizing resilience for decision-making. Nature Sustainability, 2(10), 907–913.

    Article  Google Scholar 

  49. Dalzell, P., & Adams, T. (1997). Sustainability and management of reef fisheries in the pacific islands. Proceedings of the 8th International Coral Reef Symposium, 2, 2027–2032.

  50. McClanahan, T. R. (2018). Multicriteria estimate of coral reef fishery sustainability. Fish and Fisheries, 19(5), 807–820.

    Article  Google Scholar 

  51. McClanahan, T. R., Maina, J. M., Graham, N. A., & Jones, K. R. (2016). Modeling reef fish biomass, recovery potential, and management priorities in the western Indian Ocean. PLoS One1, 11, 5.

    Google Scholar 

  52. Newton, K., Côté, I. M., Pilling, G. M., Jennings, S., & Dulvy, N. K. (2007). Current and future sustainability of island coral reef fisheries. Current Biology, 17(7), 655–658.

    Article  CAS  Google Scholar 

  53. Lamy, T., Galzin, R., Kulbicki, M., De Loma, T. L., & Claudet, J. (2016). Three decades of recurrent declines and recoveries in corals belie ongoing change in fish assemblages. Coral Reefs, 35(1), 293–302.

    Article  Google Scholar 

  54. Bell, J. D., Kronen, M., Vunisea, A., Nash, W. J., Keeble, G., Demmke, A., Pontifex, S. &  Andréfouët, S. (2009). Planning the use of fish for food security in the pacific. Marine Policy, 33(1), 64–76.

    Article  Google Scholar 

  55. Leenhardt, P., Lauer, M., Madi Moussa, R., Holbrook, S. J., Rassweiler, A., Schmitt, R. J., & Claudet, J. (2016). Complexities and uncertainties in transitioning small-scale coral reef fisheries. Frontiers in Marine Science, 3, 70.

    Article  Google Scholar 

  56. Aubanel, A. (1993). Evaluation socio-économique de la pêche en milieu corallien dans l’île de moorea. Journal de la Société des Océanistes, 96(1), 49–62.

    Article  Google Scholar 

  57. Brenier, A. (2009). Pertinence des approches participatives pour le suivi écosystémique des pêcheries récifales. PROJET, 2, 1.

    Google Scholar 

  58. Kronen, M., McArdle, B., & Labrosse, P. (2006). Surveying seafood consumption-a methodological analysis. The South Pacific Journal of Natural and Applied Sciences, 24(1), 12–19.

    Article  Google Scholar 

  59. Yonger, M. (2002). Approche de la pêcherie récifo-lagonaire de Moorea (Polynésie française): évaluation de la production halieutique et de la population de pêcheurs: Ou comment acquérir de l’information sur les acteurs privilégiés engagés dans un processus de gestion de l’espace maritime de Moorea. PhD thesis.

  60. Leenhardt, P., Moussa, R. M., & Galzin, R. (2012). Reef and lagoon fisheries yields in Moorea: A summary of data collected. Secretariat of the Pacific Community Fish Newsletter, 137, 27–35.

    Google Scholar 

  61. Nassiri, A., Thébaud, O., Holbrook, S., Lauer, M., Rassweiler, A., Schmitt, R., & Claudet, J. (2021). Hedonic evaluation of coral reef fish prices on a direct sale market. Marine Policy, 129,.

    Article  Google Scholar 

  62. Moussa, R. M. (2010). Estimation de la taille des poissons lagonaires vendus sous la forme de tui1 en bord de route sur lîle de Moorea (Polynésie Française) par analyse de clichés numériques. Cybium (Paris).

  63. Costello, C., & Kaffine, D. (2016). Private conservation in turf-managed fisheries. Natural Resource Modeling.

  64. Pinca, S., Kronen, M., Friedman, K., Magron, F., Chapman, L., Tardy, E., Pakoa, K., Awira, R., Boblin, P., & Lasi, F. (2010). Regional assessment report: Profiles and results from survey work at 63 sites across 17 Pacific Island countries and territories.

  65. Doyen, L. (2018). Mathematics for scenarios of biodiversity and ecosystem services. Environmental Modeling & Assessment, 23(6), 729–742.

    Article  Google Scholar 

  66. Stenseke, M., & Larigauderie, A. (2018). The role, importance and challenges of social sciences and humanities in the work of the intergovernmental science-policy Platform on Biodiversity and Ecosystem Services (IPBES). Innovation: The European Journal of Social Science Research, 31(sup1), S10–S14.

  67. Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic programming: Modeling and theory. SIAM.

  68. Fulton, E. A., Link, J. S., Kaplan, I. C., Savina-Rolland, M., Johnson, P., Ainsworth, C., Horne, P., Gorton, R., Gamble, R. J., Smith, A. D., et al. (2011). Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish and Fisheries, 12(2), 171–188.

    Article  Google Scholar 

  69. Christensen, V., & Walters, C. J. (2004). Ecopath with ecosim: methods, capabilities and limitations. Ecological Modelling, 172(2–4), 109–139.

    Article  Google Scholar 

  70. Hartwick, J. M. (1977). Intergenerational equity and the investing of rents from exhaustible resources. The American Economic Review, 67(5), 972–974.

    Google Scholar 

  71. Stiglitz, J. E., Sen, A., Fitoussi, J.-P., et al. (2009). Report by the commission on the measurement of economic performance and social progress.

  72. Larkin, P. A. (1977). An epitaph for the concept of maximum sustained yield. Transactions of the American Fisheries Society, 106(1), 1–11.

    Article  Google Scholar 

  73. Grafton, R. Q., Kompas, T., & Hilborn, R. W. (2007). Economics of overexploitation revisited. Science, 318(5856), 1601–1601.

    Article  CAS  Google Scholar 

  74. Doyen, L., & Gajardo, P. (2019). Sustainability standards, multicriteria maximin, and viability. Natural Resource Modeling, e12250.

  75. Martin, A., Moritz, C., Siu, G., & Galzin, R. (2017). Acanthuridae and scarinae: Drivers of the resilience of a Polynesian coral reef. Advances in Time Series Analysis and Forecasting, 19.

  76. Mumby, P. J., & Anthony, K. (2015). Resilience metrics to inform ecosystem management under global change with application to coral reefs. Methods in Ecology and Evolution, 6(9), 1088–1096.

    Article  Google Scholar 

  77. Mumby, P. J., Hastings, A., & Edwards, H. J. (2007). Thresholds and the resilience of Caribbean coral reefs. Nature, 450(7166), 98–101.

    Article  CAS  Google Scholar 

  78. Roberts, C. M. (1995). Effects of fishing on the ecosystem structure of coral reefs. Conservation Biology, 9(5), 988–995.

    Article  Google Scholar 

  79. Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F. (1998). Fishing down marine food webs. Science, 279(5352), 860–863.

    Article  CAS  Google Scholar 

  80. Thiault, L., Kernaléguen, L., Osenberg, C. W., Lisonde Loma, T., Chancerelle, Y., Siu, G., & Claudet, J. (2019). Ecological evaluation of a marine protected area network: A progressive-change BACIPS approach. Ecosphere, 10(2), e02576.

  81. ISPF. (2017). Répartition de la population en polynésie française en 2017. Tech. rep., Institut de la statistique de Polynésie française.

  82. Salvat, B., Aubanel, A., Adjeroud, M., Bouisset, P., Calmet, D., Chancerelle, Y., Cochennec, N., Davies, N., Fougerousse, A., Galzin, R., et al. (2008). Le suivi de l’état des récifs coralliens de polynésie française et leur récente évolution. Revue d’Ecologie de la Terre et de la Vie, 63(1–2), 145–177.

    Google Scholar 

Download references

Funding

This work has been carried out with the financial support of the research project ACROSS (ANR-14-CE03-0001). The role of the Belmont Forum through the network SEAVIEW (ANR-14-JPF1-0003) as well as the Cluster of Excellence COTE (ANR-10-LABX-45) through the project NAVIRE was also decisive. The main and unique authors of this study are A. Lagarde, L. Doyen, J. Claudet and O. Thebaud.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception, design, editing and conclusion. AL has written the paper, drawn the plots, and lead the article as a whole. LD and OT have realised the paragraphs, spelling and syntax corrections and modelled the equations with AL. JC and OT have helped the two previous authors on the analyses and conclusions. JC validated the ecological hypothesis. OT validated the economical concepts.

Corresponding author

Correspondence to Adrien Lagarde.

Ethics declarations

Ethics Approval

The study does not require ethics approval.

Consent to Participate and for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Fig. 12

Table 2 The five functional groups. Underlined groups stand for commercial and mobile species
Table 3 Calibrated parameters of the model, respectively (top) interactions matrix \(s_{ij}\), (middle) species intrinsic growth rates \(r_{i}\) and the diffusion rates \(d_{ip'p}\)of speces i between patch p and p’. We also display (bottom) the carrying capacity \(K_{p}\) of the habitat, i.e. the total area where algae and coral can evolve
Table 4 Fishing Parameters: catchabilities (top) \(q_{ifp}\) of fleet f on species i in patch p; (top) fisherman per \(Km^{2}\) in Maatea \(L_{f}(t)\). The share of labor involved in each fleet as well as the global density of fishermen in all areas are extrapolated from this distribution and also regarding the surface of the corresponding zone
Table 5 Radar Plot Components’ equations and remarks
Fig. 11
figure 11

Habitats Trajectories — Both figures account for the aggregated (lagoon-fore reef) cover of Coral and Algae. The 100 simulated trajectories are represented by the coloured area. The solid lines show the average of these 100 trajectories depending on the fishing strategy

Fig. 12
figure 12

Sensivity analysis for the calibration. The five first figures (top) account for the lagoon and the five following figures (bottom) stand for the fore reef. The line filled with upside down triangles represents a 10% decrease of all calibrated parameters while the line filled with “normal” triangles represents a 10% increase of all calibrated parameters

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagarde, A., Doyen, L., Claudet, J. et al. Stochastic Multi-species MSY to Achieve Ecological-Economic Sustainability of a Coral Reef Fishery System in French Polynesia. Environ Model Assess 27, 771–789 (2022). https://doi.org/10.1007/s10666-022-09847-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-022-09847-0

Keywords

Navigation