Skip to main content

Advertisement

Log in

Is Diversification a Suitable Option to Reduce Drought-Induced Risk of Forest Dieback? An Economic Approach Focused on Carbon Accounting

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Extreme or recurrent drought events are the principal source of stress on forests, impairing their overall health. They result in financial losses for forest owners and ecosystem service losses for society. Most of the forested area in the Grand-Est region, France, is covered by European beech, which is projected to decline in the future due to repeated drought events driven by climate change. Diversification is a management option that can reduce the drought-induced risk of dieback. Two types of diversification were separately and jointly analyzed: a mixture of beech species with oak species and a mixture of different tree diameter classes. Two types of losses were also considered: financial and in terms of carbon storage under different occurrences of drought events derived from climate change scenarios. We combined an individual-based model of forest growth with a forest economic approach (i.e., land expectation value or LEV), which we adapted to the stochastic context by developing a doubly-weighted LEV. The maximization of the LEV made it possible to identify the most effective adaptation strategies in terms of timber revenue and carbon storage by means of three different carbon values (i.e., market value, shadow price, and social cost). The results showed that diversification increases timber returns and reduces the loss in timber volume due to the drought-induced risk of forest dieback. However, diversification negatively affects carbon storage. Integrating the value of carbon storage increases the value of the forest stand, but only a high carbon value has a significant economic impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Material

Available in a repository (https://osf.io/6x5vn/?view_only=6c694ce341ff4fef9d373d488e4f44c4).

Code Availability

Available in a repository (https://osf.io/6x5vn/?view_only=6c694ce341ff4fef9d373d488e4f44c4).

Notes

  1. “Label Bas Carbone.”.

  2. We performed a sensitivity analysis to evaluate the impact of changes in the discount rate on each scenario analyzed. The results of the analysis are provided in Online Resource 1 (Sect. 6).

References

  1. Seidl, R., Schelhaas, M. J., & Lexer, M. J. (2011). Unraveling the drivers of intensifying forest disturbance regimes in Europe. Global Change Biology, 17(9), 2842–2852. https://doi.org/10.1111/j.1365-2486.2011.02452.x

    Article  Google Scholar 

  2. Tallieu, C., Badeau, V., Allard, D., Nageleisen, L. M., & Bréda, N. (2020). Year-to-year crown condition poorly contributes to ring width variations of beech trees in French ICP level I network. Forest Ecology and Management, 465, 118071. https://doi.org/10.1016/j.foreco.2020.118071

    Article  Google Scholar 

  3. Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H. T., Gonzalez, P., Fensham, R., Zhang, Z., Castro, J., Demidova, N., Lim, J. H., Allard, G., Running, S. W., Semerci, A., & Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  4. Bréda, N., Granier, A., & Aussenac, G. (2004). La sécheresse de 2003 dans le contexte climatique des 54 dernières années: Analyse écophysiologique et influence sur les arbres forestiers. Revue Forestière Française, 56(2), 109–130. https://doi.org/10.4267/2042/5081

    Article  Google Scholar 

  5. Bréda, N., Huc, R., Granier, A., & Dreyer, E. (2006). Temperate forest trees and stands under severe drought: A review of ecophysiological responses adaptation processes and long-term consequences. Annals of Forest Science, 63(6), 625–644. https://doi.org/10.1051/forest:2006042

    Article  Google Scholar 

  6. Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change (p. 1535). Cambridge: Cambridge University Press.

    Google Scholar 

  7. Spittlehouse, D. L., & Stewart, R. B. (2003). Adaptation to climate change in forest management. British Columbia Journal of Ecosystems and Management, 4(1). http://hdl.handle.net/123456789/493

  8. Bréda, N., & Badeau, V. (2008). Forest tree responses to extreme drought and some biotic events: Towards a selection according to hazard tolerance? Comptes Rendus Geoscience, 340(9–10), 651–662. https://doi.org/10.1016/j.crte.2008.08.003

    Article  Google Scholar 

  9. Locatelli, B., Brockhaus, M., Buck, A., & Thompson, I. (2010). Forests and adaptation to climate change: Challenges and opportunities. In G. Mery, P. Katila, G. Galloway, R. I. Alfaro, M. Kanninen, M. Lobovikov, and J. Varjo (Eds.), Forests and society - Responding to global drivers of change (pp. 21–42). IUFRO. http://www.cifor.org/knowledge/publication/3168

  10. Markowitz, H. (1952). Portfolio selection. Journal of Finance, 7(1), 77–91.

    Google Scholar 

  11. Forrester, D. I. (2014). The spatial and temporal dynamics of species interactions in mixed-species forests: From pattern to process. Forest Ecology and Management, 312, 282–292. https://doi.org/10.1016/j.foreco.2013.10.003

    Article  Google Scholar 

  12. Lebourgeois, F., Gomez, N., Pinto, P., & Mérian, P. (2013). Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains western Europe. Forest Ecology and Management, 303, 61–71. https://doi.org/10.1016/j.foreco.2013.04.003

    Article  Google Scholar 

  13. Pretzsch, H., & Schütze, G. (2009). Transgressive overyielding in mixed compared with pure stands of Norway spruce and European beech in Central Europe: Evidence on stand level and explanation on individual tree level. European Journal of Forest Research, 128(2), 183–204. https://doi.org/10.1007/s10342-008-0215-9

    Article  Google Scholar 

  14. Bonal, D., Pau, M., Toigo, M., Granier, A., & Perot, T. (2017). Mixing oak and pine trees does not improve the functional response to severe drought in central French forests. Annals of Forest Science, 74(4), 72. https://doi.org/10.1007/s13595-017-0671-9

    Article  Google Scholar 

  15. Grossiord, C., Granier, A., Ratcliffe, S., Bouriaud, O., Bruelheide, H., Chećko, E., Forrester, D. I., Dawud, S. M., Finér, L., Pollastrini, M., Scherer-Lorenzen, M., Valladares, F., Bonal, D., & Gessler, A. (2014). Tree diversity does not always improve resistance of forest ecosystems to drought. Proceedings of the National Academy of Sciences, 111(41), 14812–14815. https://doi.org/10.1073/pnas.1411970111

    Article  CAS  Google Scholar 

  16. Martin-Blangy, S., Charru, M., Gérard, S., Jactel, H., Jourdan, M., Morin, X., & Bonal, D. (2021). Mixing beech with fir or pubescent oak does not help mitigate drought exposure at the limit of its climatic range. Forest Ecology and Management, 482, 118840. https://doi.org/10.1016/j.foreco.2020.118840

    Article  Google Scholar 

  17. Pardos, M., del Río, M., Pretzsch, H., Jactel, H., Bielak, K., Bravo, F., Brazaitis, G., Defossez, E., Engel, M., Godvod, K., Jacobs, K., Jansone, L., Jansons, A., Morin, X., Nothdurft, A., Oreti, L., Ponette, Q., Pach, M., Riofrío, J., … Calama, R. (2021). The greater resilience of mixed forests to drought mainly depends on their composition: Analysis along a climate gradient across Europe. Forest Ecology and Management, 481, 118687. https://doi.org/10.1016/j.foreco.2020.118687

    Article  Google Scholar 

  18. Jacobsen, J. B., & Helles, F. (2006). Adaptive and nonadaptive harvesting in uneven-aged beech forest with stochastic prices. Forest Policy and Economics, 8(3), 223–238. https://doi.org/10.1016/j.forpol.2004.06.004

    Article  Google Scholar 

  19. Kolström, M., Lindner, M., Vilén, T., Maroschek, M., Seidl, R., Lexer, M. J., Netherer, S., Kremer, A., Delzon, S., Barbati, A., Marchetti, M., & Corona, P. (2011). Reviewing the science and implementation of climate change adaptation measures in European forestry. Forests, 2(4), 961–982. https://doi.org/10.3390/f2040961

    Article  Google Scholar 

  20. Montagné-Huck, C., & Brunette, M. (2018). Economic analysis of natural forest disturbances: A century of research. Journal of Forest Economics, 32, 42–71. https://doi.org/10.1016/j.jfe.2018.03.002

    Article  Google Scholar 

  21. Bréda, N., & Brunette, M. (2019). Are 40 years better than 55? An analysis of the reduction of forest rotation to cope with drought events in a Douglas fir stand. Annals of Forest Science, 76(2), 29. https://doi.org/10.1007/s13595-019-0813-3

    Article  Google Scholar 

  22. Brèteau-Amores, S., Brunette, M., & Davi, H. (2019). An economic comparison of adaptation strategies towards a drought-induced risk of forest decline. Ecological Economics, 164, 106294. https://doi.org/10.1016/j.ecolecon.2019.04.006

    Article  Google Scholar 

  23. Fuchs, J. M., Hittenbeck, A., Brandl, S., Schmidt, M., & Paul, C. (2021). Adaptation strategies for spruce forests-economic potential of bark beetle management and Douglas fir cultivation in future tree species portfolios. Forestry: An International Journal of Forest Research. https://doi.org/10.1093/forestry/cpab040

    Article  Google Scholar 

  24. Jönsson, A. M., Lagergren, F., & Smith, B. (2015). Forest management facing climate change – An ecosystem model analysis of adaptation strategies. Mitigation and Adaptation Strategies for Global Change, 20(2), 201–220. https://doi.org/10.1007/s11027-013-9487-6

    Article  Google Scholar 

  25. Yousefpour, R., & Hanewinkel, M. (2014). Balancing decisions for adaptive and multipurpose conversion of Norway spruce (Picea abies L. Karst) monocultures in the black forest area of Germany. Forest Science, 60(1), 73–84. https://doi.org/10.5849/forsci.11-125

    Article  Google Scholar 

  26. Charru, M., Seynave, I., Morneau, F., & Bontemps, J. D. (2010). Recent changes in forest productivity: An analysis of National Forest Inventory data for common beech (Fagus sylvatica L.) in north-eastern France. Forest Ecology and Management, 260(5), 864–874. https://doi.org/10.1016/j.foreco.2010.06.005

    Article  Google Scholar 

  27. Scharnweber, T., Manthey, M., Criegee, C., Bauwe, A., Schröder, C., & Wilmking, M. (2011). Drought matters–Declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management, 262(6), 947–961. https://doi.org/10.1016/j.foreco.2011.05.026

    Article  Google Scholar 

  28. Pretzsch, H., Steckel, M., Heym, M., Biber, P., Ammer, C., Ehbrecht, M., Bielak, K., Bravo, F., Ordóñez, C., Collet, C., Vast, F., Drössler, L., Brazaitis, G., Godvod, K., Jansons, A., de-Dios-García, J., Löf, M., Aldea, J., Korboulewsky, N., Reventlow, D. O. J., Nothdurft, A., Engel, M., Pach, M., Skrzyszewski, J., Pardos, M., Ponette, Q., Sitko, R., Fabrika, M., Svoboda, M., Černý, J., Wolff, B., Ruíz-Peinado, R., and del Río, M. (2020). Stand growth and structure of mixed-species and monospecific stands of Scots pine (Pinus sylvestris L.) and oak (Q. robur L., Quercus petraea (Matt.) Liebl.) analysed along a productivity gradient through Europe. European Journal of Forest Research, 139, 349–367. https://doi.org/10.1007/s10342-019-01233-y

  29. Zapater, M., Hossann, C., Bréda, N., Bréchet, C., Bonal, D., & Granier, A. (2011). Evidence of hydraulic lift in a young beech and oak mixed forest using 18 O soil water labelling. Trees, 25(5), 885. https://doi.org/10.1007/s00468-011-0563-9

    Article  Google Scholar 

  30. IGN. (2019). Mémento de l’inventaire forestier 2019 (pp. 36). https://inventaire-forestier.ign.fr/IMG/pdf/memento_2019_web-2.pdf

  31. Granier, A., Bréda, N., Biron, P., & Villette, S. (1999). A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecological modelling, 116(2–3), 269–283. https://doi.org/10.1016/S0304-3800(98)00205-1

    Article  Google Scholar 

  32. Fortin, M., & Manso, R. (2016). Le simulateur MATHILDE dans CAPSIS. http://capsis.cirad.fr/capsis/_media/mathildeuserguidefr.pdf

  33. Fortin, M., Pichancourt, J. B., de Melo, L. C., Colin, A., & Caurla, S. (2019). The effect of stumpage prices on large-area forest growth forecasts based on socio-ecological models. Forestry: An International Journal of Forest Research, 92, 339–359. https://doi.org/10.1093/forestry/cpz016

  34. Aussenac, R., Pérot, T., Fortin, M., de Coligny, F., Monnet, J. M., & Vallet, P. (2021). The Salem simulator version 2.0: a tool for predicting the productivity of pure and mixed stands and simulating management operations. Open Research Europe, 1(61), 61. https://doi.org/10.12688/openreseurope.13671.1

  35. Fortin, M., Van Couwenberghe, R., Perez, V., & Piedallu, C. (2019). Evidence of climate effects on the height-diameter relationships of tree species. Annals of Forest Science, 76(1), 1. https://doi.org/10.1007/s13595-018-0784-9

    Article  Google Scholar 

  36. Jucker, T., Bouriaud, O., & Coomes, D. A. (2015). Crown plasticity enables trees to optimize canopy packing in mixed-species forests. Functional Ecology, 29(8), 1078–1086. https://doi.org/10.1111/1365-2435.12428

    Article  Google Scholar 

  37. Manso, R., Morneau, F., Ningre, F., & Fortin, M. (2015). Effect of climate and intra- and inter-specific competition on diameter increment in beech and oak stands. Forestry: An International Journal of Forest Research, 88, 540–551. https://doi.org/10.1093/forestry/cpv020

  38. Manso, R., Morneau, F., Ningre, F., & Fortin, M. (2015). Incorporating stochasticity from extreme climatic events and multi-species competition relationships into single-tree mortality models. Forest Ecology and Management, 354, 243–253. https://doi.org/10.1016/j.foreco.2015.06.008

    Article  Google Scholar 

  39. Hall, D. B. (2000). Zero-inflated Poisson and binomial regression with random effects: A case study. Biometrics, 56(4), 1030–1039. https://doi.org/10.1111/j.0006-341X.2000.01030.x

    Article  CAS  Google Scholar 

  40. Trivedi, P. K., & Zimmer, D. M. (2007). Copula modeling: An introduction for practitioners. Foundations and Trends® in Econometrics, 1(1), 111

  41. Lawless, J. F. (2003). Statistical models and methods for lifetime data (2nd ed.). John Wiley & Sons Inc.

    Google Scholar 

  42. Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. Chapman & Hall.

    Book  Google Scholar 

  43. van Oldenborgh, G. J., Collins, M., Arblaster, J., Christensen, J. H., Marotzke, J., Power, S.B., Rummukainen, M., & Zhou, T. (2013). Annex I: Atlas of global and regional climate projections. In T. F. Stocker, D. Qin, G. K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

  44. Manso, R., Ningre, F., & Fortin, M. (2018). Simultaneous prediction of plot-level and tree-level harvest occurrences with correlated random effects. Forest Science, 64(5), 461–470. https://doi.org/10.1093/forsci/fxy015

    Article  Google Scholar 

  45. Dufour-Kowalski, S., Courbaud, B., Dreyfus, P., Meredieu, C., & De Coligny, F. (2012). Capsis: An open software framework and community for forest growth modelling. Annals of Forest Science, 69(2), 221–233. https://doi.org/10.1007/s13595-011-0140-9

    Article  Google Scholar 

  46. Pichancourt, J. B., Manso, R., Ningre, F., & Fortin, M. (2018). A carbon accounting tool for complex and uncertain greenhouse gas emission life cycles. Environmental Modelling & Software, 107, 158–174. https://doi.org/10.1016/j.envsoft.2018.06.005

    Article  Google Scholar 

  47. IPCC. (2006). IPCC guidelines for national greenhouse gas inventories Volume 4: Agriculture forestry and other land use. Hayama: Institute for Global Environmental Strategies (IGES).

  48. Faustmann, M. (1849). Calculation of the value which forest land and immature stands possess for forestry (English translation). In: M. Gane, E. F. von Gehren, & M. Faustmann (eds.), Martin Faustmann and the evolution of discounted cash flow: Two articles from the original German of 1849 (no. 42). Commonwealth Forestry Institute, 1968.

  49. Ministère de la Transition Ecologique et Solidaire, MTES, & Institut de l’Économie pour le Climat, I4CE (2020). Label bas carbone. Guide pédagogique. https://www.ecologie.gouv.fr/sites/default/files/LabelBasCarbone-GuidePedagogique-Mai2020.pdf

  50. Quinet, A. (2019). La valeur de l’action pour le climat. Une valeur tutélaire du carbone pour évaluer les investissements et les politiques publiques. France Stratégie. https://www.strategie.gouv.fr/publications/de-laction-climat

  51. Howard, P. H., & Sterner, T. (2014). Raising the temperature on food prices: Climate change, food security, and the social cost of carbon. Selected paper prepared for presentation at the Agricultural & Applied Economics Association’s 2014 AAEA Annual Meeting, Minneapolis, MN, July 27–29, 2014. https://ageconsearch.umn.edu/record/170648/files/PeterHHoward_AAEA2014_1.pdf

  52. Van Den Bergh, J. C. J. M., & Botzen, W. J. W. (2014). A lower bound to the social cost of CO2 emissions. Nature Climate Change, 4(4), 253–258. https://doi.org/10.1038/nclimate2135

    Article  Google Scholar 

  53. Mina, M., Huber, M. O., Forrester, D. I., Thürig, E., & Rohner, B. (2018). Multiple factors modulate tree growth complementarity in central European mixed forests. Journal of Ecology, 106(3), 1106–1119. https://doi.org/10.1111/1365-2745.12846

    Article  Google Scholar 

  54. Müller, F., Augustynczik, A. L. D., & Hanewinkel, M. (2019). Quantifying the risk mitigation efficiency of changing silvicultural systems under storm risk throughout history. Annals of Forest Science, 76(4), 116. https://doi.org/10.1007/s13595-019-0884-1

    Article  Google Scholar 

  55. Hanewinkel, M., Cullmann, D. A., Schelhaas, M. J., Nabuurs, G. J., & Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203–207. https://doi.org/10.1038/nclimate1687

    Article  Google Scholar 

  56. Kirby, K. R., & Potvin, C. (2007). Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. Forest Ecology and Management, 246(2–3), 208–221. https://doi.org/10.1016/j.foreco.2007.03.072

    Article  Google Scholar 

  57. Lange, M., Eisenhauer, N., Sierra, C. A., Bessler, H., Engels, C., Griffiths, R. I., Mellado-Vázquez, P. G., Malik, A. A., Roy, J., Scheu, S., Steinbeiss, S., Thomson, B. C., Trumbore, S. E., & Gleixner, G. (2015). Plant diversity increases soil microbial activity and soil carbon storage. Nature communications, 6(1), 1–8. https://doi.org/10.1038/ncomms7707

    Article  CAS  Google Scholar 

  58. Pajot, G. (2011). Rewarding carbon sequestration in South-Western French forests: A costly operation? Journal of Forest Economics, 17(4), 363–377. https://doi.org/10.1016/j.jfe.2010.12.002

    Article  Google Scholar 

  59. Van Kooten, G. C., Binkley, C. S., & Delcourt, G. (1995). Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. American Journal of Agricultural Economics, 77(2), 365–374. https://doi.org/10.2307/1243546

    Article  Google Scholar 

  60. Akao, K. (2011). Optimum forest program when the carbon sequestration service of a forest has value. Environmental Economics and Policy Studies, 13, 323–343. https://doi.org/10.1007/s10018-011-0016-0

    Article  Google Scholar 

  61. Knoke, T., Stimm, B., Ammer, C., & Moog, M. (2005). Mixed forests reconsidered: A forest economics contribution on an ecological concept. Forest Ecology and Management, 213, 102–116. https://doi.org/10.1016/j.foreco.2005.03.043

    Article  Google Scholar 

  62. Von Lüpke, B. (1998). Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. Forest Ecology and Management, 106(1), 19–26. https://doi.org/10.1016/S0378-1127(97)00235-1

    Article  Google Scholar 

  63. Power, S., Ashmore, M. R., & Ling, K. A. (1995). Recent trends in beech tree health in southern Britain and the influence of soil type. Water Air and Soil Pollution, 85(3), 1293–1298. https://doi.org/10.1007/BF00477160

    Article  CAS  Google Scholar 

  64. Jonard, F., André, F., Ponette, Q., Vincke, C., & Jonard, M. (2011). Sap flux density and stomatal conductance of European beech and common oak trees in pure and mixed stands during the summer drought of 2003. Journal of Hydrology, 409(1–2), 371–381. https://doi.org/10.1016/j.jhydrol.2011.08.032

    Article  Google Scholar 

  65. Favero, A., Mendelsohn, R., & Sohngen, B. (2018). Can the global forest sector survive 11 °C warming? Agricultural and Resource Economics Review, 47(2), 388–413. https://doi.org/10.1017/age.2018.15

    Article  Google Scholar 

  66. Solberg, B., Moiseyev, A., & Kallio, A. M. I. (2003). Economic impacts of accelerating forest growth in Europe. Forest Policy and Economics, 5(2), 157–171. https://doi.org/10.1016/S1389-9341(03)00022-4

    Article  Google Scholar 

  67. Metcalf, G. E., & Stock, J. H. (2020). Integrated assessment models and the social cost of carbon: A review and assessment of US experience. Review of Environmental Economics and Policy, 11(1), 80–99. https://doi.org/10.1093/reep/rew014

    Article  Google Scholar 

  68. Rakotoarison, H., & Loisel, P. (2017). The Faustmann model under storm risk and price uncertainty: A case study of European beech in Northwestern France. Forest Policy and Economics, 81, 30–37. https://doi.org/10.1016/j.forpol.2017.04.012

    Article  Google Scholar 

  69. Chladná, Z. (2007). Determination of optimal rotation period under stochastic wood and carbon prices. Forest Policy and Economics, 9(8), 1031–1045. https://doi.org/10.1016/j.forpol.2006.09.005

    Article  Google Scholar 

  70. Newell, R. G., & Pizer, W. A. (2003). Discounting the distant future: How much do uncertain rates increase valuations? Journal of Environmental Economics and Management, 46(1), 52–71. https://doi.org/10.1016/S0095-0696(02)00031-1

    Article  Google Scholar 

  71. Petr, M., Boerboom, L. G. J., Ray, D., & van der Veen, A. (2016). New climate change information modifies frames and decisions of decision makers: An exploratory study in forest planning. Regional Environmental Change, 16(4), 1161–1170. https://doi.org/10.1007/s10113-015-0827-9

    Article  Google Scholar 

  72. Yousefpour, R., Jacobsen, J. B., Thorsen, B. J., Meilby, H., Hanewinkel, M., & Oehler, K. (2012). A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Annals of Forest Science, 69(1), 1–15. https://doi.org/10.1007/s13595-011-0153-4

    Article  Google Scholar 

  73. Yousefpour, R., Temperli, C., Bugmann, H., Elkin, C., Hanewinkel, M., Meilby, H., Jacobsen, J. B., & Thorsen, B. J. (2013). Updating beliefs and combining evidence in adaptive forest management under climate change: A case study of Norway spruce (Picea abies L. Karst) in the Black Forest Germany. Journal of Environmental Management, 122, 56–64. https://doi.org/10.1016/j.jenvman.2013.03.004

    Article  Google Scholar 

  74. Yousefpour, R., Jacobsen, J. B., Meilby, H., & Thorsen, B. J. (2014). Knowledge update in adaptive management of forest resources under climate change: A Bayesian simulation approach. Annals of Forest Science, 71(2), 301–312. https://doi.org/10.1007/s13595-013-0320-x

    Article  Google Scholar 

  75. Yousefpour, R., Temperli, C., Jacobsen, J. B., Thorsen, B. J., Meilby, H., Lexer, M. J., Lindner, M., Bugmann, H., Borges, J. G., Palma, J. H. N., Ray, D., Zimmermann, N. E., Delzon, S., Kremer, K., Reyer, C. P. O., Lasch-Born, P., Garcia-Gonzalo, J., & Hanewinkel, M. (2017). A framework for modeling adaptive forest management and decision making under climate change. Ecology and Society, 22(4), 40. https://doi.org/10.5751/ES-09614-220440

    Article  Google Scholar 

  76. Radke, N., Keller, K., Yousefpour, R., & Hanewinkel, M. (2020). Identifying decision-relevant uncertainties for dynamic adaptive forest management under climate change. Climatic Change, 163(2), 891–911. https://doi.org/10.1007/s10584-020-02905-0

    Article  Google Scholar 

  77. Brunette, M., Costa, S., & Lecocq, F. (2014). Economics of species change subject to risk of climate change and increasing information: A (quasi-) option value analysis. Annals of Forest Science, 71(2), 279–290. https://doi.org/10.1007/s13595-013-0281-0

    Article  Google Scholar 

  78. Jacobsen, J. B., & Thorsen, B. J. (2003). A Danish example of optimal thinning strategies in mixed-species forest under changing growth conditions caused by climate change. Forest Ecology and Management, 180(1–3), 375–388. https://doi.org/10.1016/S0378-1127(02)00652-7

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed in partnership with Cyril Vitu and Stéphane Asaël from the CRPF (Regional Center for Privately-Owned Forests) of the Grand-Est region. The authors gratefully acknowledge the suggestions of Marielle Brunette and Eric Lacombe and the help of Aurélien Barthélémy, Jacques Becquey, and Félix Bastit.

Funding

The UMR BETA and SILVA are supported by a grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-ll-LABX-0002–01, Lab of Excellence ARBRE). The first author benefits from a PhD grant supported by the metaprogram, “Adaptation of Agriculture and Forest to Climate Change” (ACCAF), of the French National Research Institute for Agriculture, Food and Environment (INRAE), the INRAE department, EcoSocio, and the Grand-Est region.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Sandrine Brèteau-Amores, Mathieu Fortin, Pablo Andrés-Domenech; methodology: all; software: Mathieu Fortin, Nathalie Bréda; formal analysis and investigation: all; writing–original draft preparation: Sandrine Brèteau-Amores; writing–review and editing: Mathieu Fortin, Pablo Andrés-Domenech, Nathalie Bréda; funding acquisition: Sandrine Brèteau-Amores; visualization: Sandrine Brèteau-Amores; resources: Mathieu Fortin, Nathalie Bréda, Pablo Andrés-Domenech.

Corresponding author

Correspondence to Sandrine Brèteau-Amores.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 128 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brèteau-Amores, S., Fortin, M., Andrés-Domenech, P. et al. Is Diversification a Suitable Option to Reduce Drought-Induced Risk of Forest Dieback? An Economic Approach Focused on Carbon Accounting. Environ Model Assess 27, 295–309 (2022). https://doi.org/10.1007/s10666-022-09821-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-022-09821-w

Keywords

Navigation