Skip to main content

Advertisement

Log in

Cover Crops and Water Quality

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This work deals with the regulation of water pollution caused by the use of nitrogen in agriculture. We investigate the policy instruments that should be implemented to induce socially optimal water quality. To do so, we propose a dynamic theoretical framework. We focus on the potential of cover crops to preserve water quality by considering the impact of soil quality on water quality to be endogenous: we consider two interrelated dynamic equations, one for soil quality and one for water pollution, that interact through soil quality. The land area devoted to cover crops increases the soil quality stock which, in turn, decreases the water pollution stock. We show that the socially optimal fiscal scheme consists in two parts: one that acts at the intensive margin (proportional to nitrogen use) and one at the extensive margin (proportional to land cultivated with cover crops).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See https://ec.europa.eu/agriculture/sites/agriculture/files/statistics/facts-figures/agricultural-capital-land-value.pdf

  2. The subscript m0 denotes the myopic solution for l = 0.

  3. The subscript m1 denotes the myopic solution for l = 1.

  4. See [17].

  5. The subscript so0 denotes the socially optimal solution for l = 0.

  6. The subscript so1 denotes the socially optimal solution for l = 1.

  7. The subscript go denotes the solution of such a problem which is similar to that of Goetz et al. [9].

References

  1. Amundson, R., & et al. (2015). Soil and human security in the 21st century. Science, 348(6235), 647–654.

    Article  CAS  Google Scholar 

  2. Burt, O.R. (1981). Farm level economics of soil conservation in the palouse area of the northwest. American Journal of Agricultural Economics, 63(1), 83–92.

    Article  Google Scholar 

  3. Conrad, J.M., & Olson, L.J. (1992). The economics of stock pollutant: Aldicarb on Long Island. Environmental and Resource Economics, 3, 245–258.

    Article  Google Scholar 

  4. Council of the European Communities. (1991). Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources.

  5. Cumming, R. (1971). Optimum exploitation of groundwater reserves with saltwater intrusion. Water Resources Research, 7(6), 1415–14A23.

    Article  Google Scholar 

  6. Dockner, E. (1985). Local stability analysis in optimal control problems with two state variables. In Feichtinger, G. (Ed.) Optimal control theory and economic analysis 2 (pp. 89–103). Amsterdam: Elsevier.

  7. Goetz, R.U., & Zilberman, D. (1995). Mining the soil: agricultural production system on peatland. Environmental and Resource Economics, 6, 119–138.

    Article  Google Scholar 

  8. Goetz, R.U. (1997). Diversification in agricultural production: a dynamic model of optimal cropping to manage soil erosion. American Journal of Agricultural Economics, 79, 341–356.

    Article  Google Scholar 

  9. Goetz, R.U., & et al. (2006). Determining the economic gains from regulation at the extensive and intensive margins. European Review of Agricultural Economics, 33(1), 1–30.

    Article  Google Scholar 

  10. Hediger, W. (2003). Sustainable farm income in the presence of soil erosion: an agricultural Hartwick rule. Ecological Economics, 45, 1–16.

    Article  Google Scholar 

  11. Jayet, P.-A., & Petsakos, A. (2013). Evaluating the efficiency of a uniform N-input tax under different policy scenarios at different scales. Environmental Modelling and Assessment, 18, 57–72.

    Article  Google Scholar 

  12. Justes, E. (2017). Cover crops for sustainable farming. Berlin: Springer.

    Book  Google Scholar 

  13. Kaspar, T.C., & Singer, J.W. (2011). The use of cover crops to manage soil. In Hatfild, J.L., & Sauer, T.J. (Eds.) Soil management: building a stable base for agriculture. Madison, WI: American Society of Agronomy and Soil Science Society of America.

  14. Kling, C.L., & et al. (2014). LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico Hypoxia. European Review of Agricultural Economics, 41(3), 431–459.

    Article  Google Scholar 

  15. Langyintuo, A.S., & et al. (2005). Yield and income risk-efficiency analysis of alternative systems for rice production in the Guinea Savannah of Northern Ghana. Agricultural Economics, 32, 141–150.

    Article  Google Scholar 

  16. Legras, S. (2010). Managing correlated stock externalities: water taxes with a pinch of salt. Environment and Development Economics, 15(3), 275–292.

    Article  Google Scholar 

  17. Léonard, D., & Van Long, N. (1998). Optimal control theory and static optimization in economics. Cambridge: Cambridge University Press.

    Google Scholar 

  18. Lichtenberg, E. (1989). Land quality, irrigation development and cropping patterns in the Northern High Plains. American Journal of Agricultural Economics, 71(1), 187–194.

    Article  Google Scholar 

  19. Loehman, E.T., & Randhir, T.O. (1999). Alleviating soil erosion/pollution stock externalities: alternative roles for government. Ecological Economics, 30, 29–46.

    Article  Google Scholar 

  20. McConnell, K. (1983). An economic model of soil conservation. American Journal of Agricultural Economics, 65(1), 83–89.

    Article  Google Scholar 

  21. Phaneuf, D.J., & Requate, T. (2017). A course in environmental economics - theory, policy and practice. Cambridge: Cambridge University Press.

    Google Scholar 

  22. Roseta-Palma, C. (2002). Groundwater management when water quality is endogenous. Journal of Environmental Economics and Management, 44, 93–105.

    Article  Google Scholar 

  23. Schipanski, M.E., & et al. (2014). A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agricultural Systems, 125, 12–22.

    Article  Google Scholar 

  24. Sutton, M., & et al. (2011). The european nitrogen assessment: sources, effects and policy perspectives. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  25. Xabadia, A., & et al. (2008). The gains from differentiated policies to control stock pollution when producers are heterogeneous. American Journal of Agricultural Economics, 90(4), 1059–1073.

    Article  Google Scholar 

  26. Xepapadeas, A. (1996). Quantity and quality management of groundwater: an application to irrigated agriculture in Iraklion, Crete. Environmental Modeling and Assessment, 1, 25–35.

    Article  Google Scholar 

  27. Yadav, S.N. (1997). Dynamic optimization of nitrogen use when groundwater contamination is internalized at the standard in the long run. American Journal of Agricultural Economics, 79(3), 31–945.

    Article  Google Scholar 

  28. Zeitouni, N., & Dinar, A. (1997). Mitigating negative water quality and quality externalities by joint management of adjacent aquifers. Environmental and Resource Economics, 9, 1–20.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa Martin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: Proof of Lemma 1

Three cases are to be distinguished.

  • Case 1: l = 0 and 1 − l > 0.We deduce from KTC that, in this case, ϕ = 0 and \(\frac {\partial \pi _{1}}{\partial l}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }\leq 0\).The optimal solution then satisfies: x0 = a0 + bqs and x1 = 0.

  • Case 2: l > 0 and 1 − l = 0.We deduce from KTC that, in this case, \(\frac {\partial \pi _{1}}{\partial l}- \frac {\partial \pi _{0}}{\partial \left (1-l\right ) }-\phi = 0\) and ϕ ≥ 0, which means that \(\frac {\partial \pi _{1}}{\partial l}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }\geq 0\).The optimal solution then satisfies: x1 = a1 + bqs and x0 = 0.

  • Case 3: l > 0 and 1 − l > 0.We deduce from KTC that, in this case, ϕ = 0 and \(\frac {\partial \pi _{1}}{\partial l}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }= 0\).If we put this into Eq. 5, we obtain \({\Phi }_{3}=-\frac { {x_{0}^{2}}}{2}+a_{0}x_{0}+bx_{0}q_{s}-f_{0}\) which leads to the same solution as case 1 where l = 0. Therefore, case 3 never occurs which indicates that discontinuities may arise.

Appendix 2: Proof of Proposition 1

We are looking for the solution of the following dynamic system:

$$ \left( \begin{array}{c} \dot{q}_{s,m0} \\ \dot{s}_{w,m0} \end{array}\right) =\underset{A_{m0}}{\underbrace{ \left( \begin{array}{cc} -\alpha & 0 \\ b-\beta & -\gamma \end{array}\right) }} \left( \begin{array}{c} q_{s,m0} \\ s_{w,m0} \end{array}\right) + \left( \begin{array}{c} 0 \\ a_{0} \end{array}\right) $$

The steady state (denoted ) of this system is given by:

$$ \left( \!\begin{array}{c} 0 \\ 0 \end{array}\!\right) = \left( \!\begin{array}{cc} -\alpha & 0 \\ b-\beta & -\gamma \end{array}\!\right)\! \left( \!\begin{array}{c} q_{s,m0\infty } \\ s_{w,m0\infty } \end{array}\!\right) + \left( \!\begin{array}{c} 0 \\ a_{0} \end{array}\!\right) \!\Leftrightarrow\! \left( \!\begin{array}{c} q_{s,m0\infty } \\ s_{w,m0\infty } \end{array}\!\right) = \left( \!\begin{array}{c} 0 \\ \frac{a_{0}}{\gamma } \end{array}\!\right) $$

We know from \(\det (A_{m0})= \left |\begin {array}{cc}-\alpha & 0 \\ b-\beta & -\gamma \end {array}\right | =\alpha \gamma >0\) and tr(Am0) = −αγ < 0 that this equilibrium is stable.

Furthermore, Am0 admits two eigenvalues, respectively eigenvectors, − α and − γ, respectively \( \left (\begin {array}{c} \frac {\gamma -\alpha }{b-\beta } \\ 1 \end {array}\right )\) and \( \left (\begin {array}{c} 0 \\ 1 \end {array}\right )\), that give the following general solution of the dynamic system under study:

$$ \left( \!\begin{array}{c} q_{s,m0}(t) \\ s_{w,m0}(t) \end{array}\!\right) \!=k_{1,m0} \!\left( \!\begin{array}{c} 0 \\ 1 \end{array}\!\right) e^{-\gamma t}+k_{2,m0} \!\left( \!\begin{array}{c} \frac{\gamma -\alpha }{b-\beta } \\ 1 \end{array}\right) e^{-\alpha t}+ \left( \begin{array}{c} 0 \\ \frac{a_{0}}{\gamma } \end{array}\right) $$

The constants k1, m0 and k2, m0 are computed based on initial conditions qs(0) and sw(0):

$$ \begin{array}{@{}rcl@{}} \left\{\!\!\begin{array}{c} {q_{s}(0)}\\ {s_{w}(0)} \end{array}\right. \! = \left\{\!\!\begin{array}{c} {k_{2,m0}\frac{\gamma -\alpha }{b-\beta }}\\ {k_{1,m0} + k_{2,m0} + \frac{a_{0}}{\gamma }} \end{array}\right.\\ &&{\kern-7.5pc}\Leftrightarrow\! \left\{\!\begin{array}{c} {k_{2,m0}}\\{k_{1,m0}} \end{array}\right. = \left\{\!\begin{array}{c} {\frac{(b-\beta )q_{s}(0)}{ \gamma -\alpha }}\\ {s_{w}(0) - \frac{(b-\beta )q_{s}(0)}{\gamma -\alpha } - \frac{ a_{0}}{\gamma}} \end{array}\right. \end{array} $$

We finally obtain the following solution:

$$ \begin{array}{@{}rcl@{}} \left( \begin{array}{c} q_{s,m0}(t) \\ s_{w,m0}(t) \end{array}\right) &=&\left( s_{w}(0)-\frac{(b-\beta )q_{s}(0)}{\gamma -\alpha }-\frac{a_{0}}{ \gamma }\right)\\ &&\times\left( \begin{array}{c} 0 \\ 1 \end{array}\right) e^{-\gamma t}\!+\frac{(b - \beta )q_{s}(0)}{\gamma -\alpha } \left( \!\begin{array}{c} \frac{\gamma -\alpha }{b-\beta } \\ 1 \end{array}\!\right) e^{-\alpha t}\\&&+ \left( \begin{array}{c} 0 \\ \frac{a_{0}}{\gamma } \end{array}\right) \end{array} $$

The path of nitrogen use is then directly deduced:

$$ x_{0,m0}(t)=a_{0}+bq_{s,m0}(t)=a_{0}+bq_{s}(0)e^{-\alpha t} $$

Appendix 3: Proof of Proposition 2

We are looking for the solution of the following dynamic system:

$$ \left( \begin{array}{c} \dot{q}_{s,m1} \\ \dot{s}_{w,m1} \end{array}\right) =\underset{A_{m1}}{\underbrace{ \left( \begin{array}{cc} -\alpha & 0 \\ b-\beta & -\gamma \end{array}\right) }} \left( \begin{array}{c} q_{s,m1} \\ s_{w,m1} \end{array}\right) + \left( \begin{array}{c} 1 \\ a_{1} \end{array}\right) $$

The steady state (denoted ) of this system is given by:

$$ \begin{array}{@{}rcl@{}} \left( \begin{array}{c} 0 \\ 0 \end{array}\right) &=& \left( \begin{array}{cc} -\alpha & 0 \\ b-\beta & -\gamma \end{array}\right) \left( \begin{array}{c} q_{s,m1\infty } \\ s_{w,m1\infty } \end{array}\right)+ \left( \begin{array}{c} 1 \\ a_{1} \end{array}\right)\\ &&\Leftrightarrow \left( \begin{array}{c} q_{s,m1\infty } \\ s_{w,m1\infty } \end{array}\right) = \left( \begin{array}{c} \frac{1}{\alpha } \\ \frac{a_{1}\alpha +b-\beta }{\gamma \alpha } \end{array}\right) \end{array} $$

Since Am1 = Am0, this equilibrium is stable. As before, the general solution of the dynamic system under study is given by:

$$ \left( \!\begin{array}{c} q_{s,m1}(t) \\ s_{w,m1}(t) \end{array}\!\right) = k_{1,m1} \left( \!\begin{array}{c} 0 \\ 1 \end{array}\!\right) e^{-\gamma t}+k_{2,m1} \left( \!\begin{array}{c} \frac{\gamma -\alpha }{b-\beta } \\ 1 \end{array}\!\right) e^{-\alpha t}+ \left( \!\begin{array}{c} \frac{1}{\alpha } \\ \frac{a_{1}\alpha +b-\beta }{\gamma \alpha } \end{array}\!\right) $$

The constants k1, m1 and k2, m1 are computed based on initial conditions qs(0) and sw(0):

$$ \begin{array}{@{}rcl@{}} \left\{\begin{array}{c} \!{q_{s}(0)}\\ \!{s_{w}(0)} \end{array}\right. \!&=&\! \left\{\begin{array}{c} {k_{2,m1}\frac{\gamma -\alpha }{b-\beta }}\\ {k_{1,m1}+k_{2,m1}+\frac{a_{1}}{\gamma }} \end{array}\right.\\ &&\!\Leftrightarrow \left\{\begin{array}{c} {k_{2,m1}}\\ {k_{1,m1}} \end{array}\right. \! =\! \left\{\begin{array}{c} {\frac{(b-\beta )\left( q_{s}(0)-\frac{1}{\alpha }\right) }{\gamma -\alpha }}\\ {s_{w}(0) - \frac{ (b-\beta )q_{s}(0)}{\gamma -\alpha }\! - \!\frac{a_{1}}{\gamma }\! + \! \frac{b-\beta }{ \gamma \left( \gamma -\alpha \right) }} \end{array}\right. \end{array} $$

We finally obtain the following solution:

$$ \begin{array}{@{}rcl@{}} &&{}\left( \begin{array}{c} q_{s,m1}(t) \\ s_{w,m1}(t) \end{array}\right)\\ {\kern10pt} & = & \!\left( s_{w}(0) - \frac{(b\! -\!\ \beta )q_{s}(0)}{\gamma -\alpha }\! -\!\ \frac{a_{1}}{ \gamma }\! +\! \frac{b-\beta }{\gamma \left( \gamma\! -\!\alpha \right) }\right)\! \left( \begin{array}{c} 0 \\ 1 \end{array}\right) e^{-\gamma t}\\ &&+\frac{(b\! -\! \beta )\left( q_{s}(0)-\frac{1}{\alpha }\right) }{ \gamma -\alpha } \left( \!\begin{array}{c} \frac{\gamma -\alpha }{b-\beta } \\ 1 \end{array}\!\right) e^{-\alpha t}+ \left( \begin{array}{c} \frac{1}{\alpha } \\ \frac{a_{1}\alpha +b-\beta }{\gamma \alpha } \end{array}\right) \end{array} $$

The path of nitrogen use is then directly deduced:

$$ x_{1,m1}(t)=a_{1}+bq_{s,m1}(t)=a_{1}+b\left( q_{s}(0)-\frac{1}{\alpha }\right) e^{-\alpha t}+\frac{b}{\alpha } $$

Appendix 4: Proof of Lemma 2

Three cases are to be distinguished.

  • Case 1: l = 0 and 1 − l > 0.We deduce from KTC in Eq. 15 that, in this case, ψ = 0 and \(\frac {\partial \pi _{1}}{\partial l}+\mu x_{1}+\lambda -\frac {\partial \pi _{0}}{ \partial \left (1-l\right ) }-\mu x_{0}\leq 0\).The solution of problem (10) then satisfies: x0 = a0 + bqs + μ and x1 = 0.

  • Case 2: l > 0 and 1 − l = 0.We deduce from KTC in Eq. 15 that, in this case, \(\frac {\partial \pi _{1}}{\partial l}+\mu x_{1}+\lambda -\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }-\mu x_{0}-\psi = 0\) and ψ ≥ 0, which means that \( \frac {\partial \pi _{1}}{\partial l}+\mu x_{1}+\lambda -\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }-\mu x_{0}\geq 0\).The solution of problem (10) then satisfies: x1 = a1 + bqs + μ and x0 = 0.

  • Case 3: l > 0 and 1 − l > 0.We deduce from KTC in Eq. 15 that, in this case, ψ = 0 and \(\frac {\partial \pi _{1}}{\partial l}+\mu x_{1}+\lambda -\frac {\partial \pi _{0}}{ \partial \left (1-l\right ) }-\mu x_{0}= 0\).If we put this into Eq. 11, we obtain \(L_{3}=-\frac {{x_{0}^{2}} }{2}+a_{0}x_{0}+bx_{0}q_{s}-f_{0}-cs_{w}-\lambda \alpha q_{s}+\mu \left (x_{0}-\beta q_{s}-\gamma s_{w}\right ) \) which is equivalent to case 1. Therefore, case 3 never occurs which indicates that discontinuities may arise.

Appendix 5: Proof of Proposition 3

We are looking for the solution of the following system:

$$ \left( \!\begin{array}{c} \dot{q}_{s,so0} \\ \dot{s}_{w,so0} \\ \dot{\lambda}_{so0} \\ \dot{\mu}_{so0} \end{array}\!\right) = \underset{A_{so0}}{\underbrace{ \left( \!\begin{array}{cccc} -\alpha & 0 & 0 & 0 \\ b-\beta & -\gamma & 0 & 1 \\ -b^{2} & 0 & \delta +\alpha & \beta -b \\ 0 & 0 & 0 & \delta +\gamma \end{array}\!\right) }} \left( \!\begin{array}{c} q_{s,so0} \\ s_{w,so0} \\ \lambda_{so0} \\ \mu_{so0} \end{array}\!\right) + \left( \!\begin{array}{c} 0 \\ a_{0} \\ -ba_{0} \\ c \end{array}\!\right) $$

Before studying the steady state, we need to check the local stability of this system. To do so, we depart from Legras [16] whose proof follows Dockner [6]. Two conditions are necessary and sufficient to ensure the saddle point property: B < 0 and \(0<\det A_{so0}<\left (\frac {B}{2}\right )^{2}\) where

$$ \begin{array}{@{}rcl@{}} B = \left|\begin{array}{cc} \frac{\partial \dot{q}_{s,so0}}{\partial q_{s,so0}} & \frac{\partial \dot{q} _{s,so0}}{\partial \lambda_{so0}} \\ \frac{\partial \dot{\lambda}_{so0}}{\partial q_{s,so0}} & \frac{\partial \dot{\lambda}_{so0}}{\partial \lambda_{so0}} \end{array}\right| + \left|\begin{array}{cc} \frac{\partial \dot{s}_{w,so0}}{\partial s_{w,so0}} & \frac{\partial \dot{s} _{w,so0}}{\partial \mu_{so0}} \\ \frac{\partial \dot{\mu}_{so0}}{\partial s_{w,so0}} & \frac{\partial \dot{\mu }_{so0}}{\partial \mu_{so0}} \end{array}\right| + 2 \left|\begin{array}{cc} \frac{\partial \dot{q}_{s,so0}}{\partial s_{w,so0}} & \frac{\partial \dot{q} _{s,so0}}{\partial \mu_{so0}} \\ \frac{\partial \dot{\lambda}_{so0}}{\partial s_{w,so0}} & \frac{\partial \dot{\lambda}_{so0}}{\partial \mu_{so0}} \end{array}\right| \end{array} $$

Basic computations lead to:

$$ \begin{array}{@{}rcl@{}} B&=& \left|\begin{array}{cc} -\alpha & 0 \\ -b^{2} & \delta +\alpha \end{array}\right| + \left|\begin{array}{cc} -\gamma & 1 \\ 0 & \delta +\gamma \end{array}\right| + 2 \left|\begin{array}{cc} 0 & 0 \\ 0 & \beta -b \end{array}\right| \\&=&-\alpha \left( \delta +\gamma \right) -\gamma \left( \delta +\gamma \right)<0 \end{array} $$

and

$$ \det A_{so0}=\alpha \gamma \left( \delta +\alpha \right) \left( \delta +\gamma \right) >0 $$

Furthermore,

$$ \left( \frac{B}{2}\right)^{2}-\det A_{so0}=\left[ \alpha \left( \delta +\alpha \right) -\gamma \left( \delta +\gamma \right) \right]^{2}>0 $$

The steady state (denoted ) of the previous system is given by:

$$ \begin{array}{@{}rcl@{}} \left( \!\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\!\right) \! &=&\! \left( \!\begin{array}{cccc} -\alpha & 0 & 0 & 0 \\ b-\beta & -\gamma & 0 & 1 \\ -b^{2} & 0 & \delta +\alpha & \beta -b \\ 0 & 0 & 0 & \delta +\gamma \end{array}\!\right)\! \left( \begin{array}{c} q_{s,so0\infty } \\ s_{w,so0\infty } \\ \lambda_{so0\infty } \\ \mu_{so0\infty } \end{array}\right) \! +\! \left( \!\begin{array}{c} 0 \\ a_{0} \\ -ba_{0} \\ c \end{array}\!\right)\\ &&\Leftrightarrow\! \left( \!\begin{array}{c} q_{s,so0\infty } \\ s_{w,so0\infty } \\ \lambda_{so0\infty } \\ \mu_{so0\infty } \end{array}\!\right) = \left( \!\begin{array}{c} 0 \\ \frac{a_{0}\left( \delta +\gamma \right) -c}{\gamma \left( \delta +\gamma \right) } \\ \frac{ba_{0}}{\delta +\alpha }-\frac{c(b-\beta )}{\left( \delta +\alpha \right) \left( \delta +\gamma \right) } \\ -\frac{c}{\delta +\gamma } \end{array}\!\right) \end{array} $$

The general solution of this system is as follows:

$$ \begin{array}{@{}rcl@{}} \left( \! \begin{array}{c} q_{s,so0}(t) \\ s_{w,so0}(t) \\ \lambda_{so0}(t) \\ \mu_{so0}(t) \end{array}\!\right)\! &=&\!k_{1,so0}e^{-\gamma t} \left( \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}\right)\\ &&\!+k_{2,so0}e^{-\alpha t} \left( \begin{array}{c} \frac{2\alpha +\delta }{b^{2}} \\ -\frac{\left( 2\alpha +\delta \right) (b-\beta )}{(\alpha -\gamma )b^{2}} \\ 1 \\ 0 \end{array}\right) \\ &&\! +k_{3,so0}e^{(\delta +\gamma )t} \left( \begin{array}{c} 0 \\ 1 \\ \frac{2b\gamma +\delta b-2\beta \gamma -\delta \beta }{\alpha -\gamma } \\ 2\gamma +\delta \end{array}\right) \\ &&\! +k_{4,so0}e^{(\delta +\alpha )t} \!\left( \!\begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}\!\right) \! +\! \left( \!\begin{array}{c} 0 \\ \frac{a_{0}\left( \delta +\gamma \right) -c}{\gamma \left( \delta +\gamma \right) } \\ \frac{ba_{0}}{\delta +\alpha }\! -\! \frac{c(b-\beta )}{\left( \delta +\alpha \right) \left( \delta +\gamma \right) } \\ -\frac{c}{\delta +\gamma } \end{array}\!\right) \end{array} $$

where k1, so0, k2, so0, k3, so0 and k4, so0 denotes the constants of integration.

The steady state given by this system of equations is globally unstable because of positive eigenvalues, δ + γ, and, δ + α, that prevent the transversality conditions from being satisfied. The stability set is such that k3, so0 = 0 and k4, so0 = 0. We then deduce from the initial conditions qs(0) and sw(0):

$$ \begin{array}{@{}rcl@{}} \left\{\begin{array}{c} {q_{s,so0}(0)}\\ {s_{w,so0}(0)} \end{array}\right. \! &=&\! \left\{\begin{array}{c} {k_{2,so0}\frac{\delta }{b^{2}}}\\ k_{1,so0}-k_{2,so0}\frac{\left( 2\alpha +\delta \right) (b-\beta ) }{(\alpha -\gamma)b^{2}}+\frac{a_{0}\left( \delta +\gamma \right) -c} {\gamma \left( \delta +\gamma \right) } \end{array}\right.\\ &&\!\Leftrightarrow \left\{\begin{array}{c} {k_{2,so0}=\frac{b^{2}q_{s}(0)}{2\alpha +\delta}}\\ \!{k_{1,so0}\! =\! s_{w}(0)+\frac{ q_{s}(0)(b-\beta )}{\alpha -\gamma }\! -\!\frac{a_{0}\left( \delta +\gamma \right) -c}{\gamma \left( \delta +\gamma \right) }} \end{array}\right. \end{array} $$

We finally obtain the following solution:

$$ \begin{array}{@{}rcl@{}} \left( \! \begin{array}{c} q_{s,so0}(t) \\ s_{w,so0}(t) \\ \lambda_{so0}(t) \\ \mu_{so0}(t) \end{array}\!\right) \! &=&\! \left( \begin{array}{c} q_{s}(0) \\ \frac{(b-\beta )q_{s}(0)}{\gamma -\alpha } \\ \frac{b^{2}q_{s}(0)}{2\alpha +\delta } \\ 0 \end{array}\right) e^{-\alpha t}\\ &&\! +\! \left( \! \begin{array}{c} 0 \\ s_{w}(0)\! +\! \frac{q_{s}(0)(b-\beta )}{\alpha -\gamma }\! -\! \frac{a_{0}}{\gamma }+ \frac{c}{\gamma (\delta +\gamma )} \\ 0 \\ 0 \end{array}\!\right) e^{-\gamma t}\\ &&\! +\! \left( \begin{array}{c} 0 \\ \frac{a_{0}\left( \delta +\gamma \right) -c}{\gamma \left( \delta +\gamma \right) } \\ \frac{ba_{0}}{\delta +\alpha }-\frac{c(b-\beta )}{\left( \delta +\alpha \right) \left( \delta +\gamma \right) } \\ -\frac{c}{\delta +\gamma } \end{array}\right) \end{array} $$

The path of nitrogen use is then directly deduced:

$$ \begin{array}{@{}rcl@{}} x_{0,so0}(t)&=&a_{0}+bq_{s,so0}(t)+\mu_{so0}\\ &&\Leftrightarrow x_{0,so0}(t)=a_{0}\\ &&+bq_{s}(0)e^{-\alpha t}-\frac{c}{\delta +\gamma } \end{array} $$

Appendix 6: Proof of Proposition 4

We are looking for the solution of the following system:

$$ \left( \!\begin{array}{c} \dot{q}_{s,so1} \\ \dot{s}_{w,so1} \\ \dot{\lambda}_{so1} \\ \dot{\mu}_{so1} \end{array}\!\right) = \left( \!\begin{array}{cccc} -\alpha & 0 & 0 & 0 \\ b-\beta & -\gamma & 0 & 1 \\ -b^{2} & 0 & \delta +\alpha & \beta -b \\ 0 & 0 & 0 & \delta +\gamma \end{array}\!\right)\! \left( \!\begin{array}{c} q_{s,so1} \\ s_{w,so1} \\ \lambda_{so1} \\ \mu_{so1} \end{array}\!\right) + \left( \!\begin{array}{c} 1 \\ a_{1} \\ -ba_{1} \\ c \end{array}\!\right) $$

This system is very similar to the previous one, except for the constant term of soil quality motion over time that will induce more complex expressions. As a consequence, the preceding proof of the local stability of the system remains valid.

The steady state (denoted ) of this system is given by:

$$ \begin{array}{@{}rcl@{}} \left( \!\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \end{array}\!\right) \!\!&=&\!\! \left( \!\begin{array}{cccc} -\alpha & 0 & 0 & 0 \\ b-\beta & -\gamma & 0 & 1 \\ -b^{2} & 0 & \delta +\alpha & \beta -b \\ 0 & 0 & 0 & \delta +\gamma \end{array}\!\right)\! \left( \!\begin{array}{c} q_{s,so1\infty } \\ s_{w,so1\infty } \\ \lambda_{so1\infty } \\ \mu_{so1\infty } \end{array}\!\right) \! + \left( \!\!\begin{array}{c} 1 \\ a_{1} \\ -ba_{1} \\ c \end{array}\!\!\right)\\ &\Leftrightarrow& \left( \begin{array}{c} q_{s,so1\infty } \\ s_{w,so1\infty } \\ \lambda_{so1\infty } \\ \mu_{so1\infty } \end{array}\right) = \left( \begin{array}{c} \frac{1}{\alpha } \\ \frac{a_{1}}{\gamma }+\frac{b-\beta }{\alpha \gamma }-\frac{c}{\gamma (\delta +\gamma )} \\ \frac{ba_{1}\alpha +b^{2}}{\alpha (\delta +\alpha )}+\frac{c(\beta -b)}{ (\delta +\gamma )(\delta +\alpha )} \\ -\frac{c}{\delta +\gamma } \end{array}\right) \end{array} $$

The general solution of this system is as follows:

$$ \begin{array}{@{}rcl@{}} \left( \begin{array}{c} q_{s,so1}(t) \\ s_{w,so1}(t) \\ \lambda_{so1}(t) \\ \mu_{so1}(t) \end{array}\right) &=&k_{1,so1}e^{-\gamma t} \left( \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \end{array}\right) \\ &&+k_{2,so1}e^{-\alpha t} \left( \begin{array}{c} \frac{2\alpha +\delta }{b^{2}} \\ -\frac{\left( 2\alpha +\delta \right) (b-\beta )}{(\alpha -\gamma )b^{2}} \\ 1 \\ 0 \end{array}\right)\\ && +k_{3,so1}e^{(\delta +\gamma )t} \left( \begin{array}{c} 0 \\ 1 \\ \frac{2b\gamma +\delta b-2\beta \gamma -\delta \beta }{\alpha -\gamma } \\ 2\gamma +\delta \end{array}\right)\\ &&+k_{4,so1}e^{(\delta +\alpha )t} \left( \begin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}\right)\\ &&+ \left( \begin{array}{c} \frac{1}{\alpha } \\ \frac{a_{1}}{\gamma }+\frac{b-\beta }{\alpha \gamma }-\frac{c}{\gamma (\delta +\gamma )} \\ \frac{ba_{1}\alpha +b^{2}}{\alpha (\delta +\alpha )}+\frac{c(\beta -b)}{(\delta +\gamma )(\delta +\alpha )} \\ -\frac{c}{\delta +\gamma } \end{array}\right) \end{array} $$

where k1, so1, k2, so1, k3, so1 and k4, so1 denotes the constants of integration.

The steady state given by this system of equations is globally unstable because of positive eigenvalues, δ + γ, and, δ + α, that prevent the transversality conditions from being satisfied. The stability set is such that k3, so1 = 0 and k4, so1 = 0. We then deduce from the initial conditions qs(0) and sw(0):

$$ \begin{array}{@{}rcl@{}} \left\{\!\begin{array}{c} {q_{s,so1}(0)}\\ {s_{w,so1}(0)} \end{array}\right. \!\! & = &\! \! \left\{\begin{array}{c} {k_{2,so1}\frac{\delta}{b^{2}}+\frac{1}{\alpha }}\\ {k_{1,so1}\! -\! k_{2,so1}\frac{\delta (b-\beta )}{(\alpha -\gamma )b^{2}}+\frac{a_{1}}{\gamma }\! +\!\frac{b-\beta }{\alpha \gamma } \! -\! \frac{c}{\gamma (\delta +\gamma )}} \end{array}\right.\\ &&\!\!\Leftrightarrow\! \left\{\begin{array}{c} {k_{2,so1}= \frac{b^{2}(\alpha q_{s}(0)-1)}{\alpha \left( 2\alpha +\delta \right) }}\\ \!\!{k_{1,so1}\!\! =\!\! s_{w}({\kern-.5pt}0{\kern-.5pt}) + \frac{\left( \gamma q_{s}(0){\kern-.5pt}-{\kern-.5pt}1\right) (b{\kern-.5pt}-{\kern-.5pt}\beta )}{\gamma \left( \alpha -\gamma \right) } - \frac{a_{1}(\delta +\gamma )-c}{ \gamma (\delta +\gamma )}} \end{array}\right. \end{array} $$

We finally obtain the following solution:

$$ \begin{array}{@{}rcl@{}} \!\left( \!\!\begin{array}{c} q_{s,so1}(t) \\ s_{w,so1}(t) \\ \lambda_{so1}(t) \\ \mu_{so1}(t) \end{array}\!\!\right) \!\! &=&\!\! \left( \!\!\begin{array}{c} q_{s}(0)-\frac{1}{\alpha } \\ \frac{(\alpha q_{s}(0)-1)(b-\beta )}{\alpha \left( \gamma -\alpha \right)}\\ \frac{b^{2}(\alpha q_{s}(0)-1)}{\alpha \left( 2\alpha +\delta \right)}\\ 0 \end{array}\!\!\right) e^{-\alpha t}\\ &&\! + \left( \!\!\begin{array}{c} 0 \\ s_{w}(0) + \frac{\left( {\kern-.5pt} \gamma{\kern-.5pt} q_{s}(0)-{\kern-.5pt}1{\kern-.5pt}\right) (b-{\kern-.5pt}\beta )}{\gamma \left( \alpha -\gamma \right) }\! -\! \frac{a_{1}}{\gamma }\! +\!\frac{c}{\gamma{\kern-.5pt} (\delta +\gamma{\kern-.5pt} )} \\ 0 \\ 0 \end{array}\!\!\right) \!e^{-\gamma t}\\ &&+ \left( \begin{array}{c} \frac{1}{\alpha } \\ \frac{a_{1}}{\gamma }+\frac{b-\beta }{\alpha \gamma }-\frac{c}{\gamma (\delta +\gamma )} \\ \frac{ba_{1}\alpha +b^{2}}{\alpha (\delta +\alpha )}+\frac{c(\beta -b)}{(\delta +\gamma )(\delta +\alpha )} \\ -\frac{c}{\delta +\gamma } \end{array}\right) \end{array} $$

The path of nitrogen use is then directly deduced:

$$ \begin{array}{@{}rcl@{}} x_{1,so1}(t)&=&a_{1}+bq_{s,so1}(t)+\mu_{so1}\\ &&\Leftrightarrow x_{1,so1}(t)=a_{1} +b\left( q_{s}(0)-\frac{1}{\alpha }\right)e^{-\alpha t}\\&&+\frac{b}{ \alpha }-\frac{c}{\delta +\gamma } \end{array} $$

Appendix 7: Proof of Remark 1

First, we assume that the set of parameters is such that x1, go and x0, go (the subscript go denotes the solution of such a problem which is similar to that of Goetz et al. [9]) are always positive. From problem (5.3) in which a fiscal scheme on fertilizer denoted T is introduced, we define a new optimization function:

$$ \begin{array}{@{}rcl@{}} L &:=&\left( -\frac{{x_{1}^{2}}}{2}+a_{1}x_{1}+bx_{1}q_{s}+Tx_{1}-f_{1}\right) l\\ && +\left( -\frac{{x_{0}^{2}}}{2}+a_{0}x_{0}+bx_{0}q_{s}+Tx_{0}-f_{0}\right) \left( 1-l\right)\\ &&+\lambda \left( l-\alpha q_{s}\right) +\psi (1-l) \end{array} $$
(20)

According to the maximum principle with inequality constraint, the optimal solution of problem (5.3) is defined by:

$$ \begin{array}{@{}rcl@{}} &&{}\underset{x_{1},x_{0},l}{\max }\left( \!-\frac{{x_{1}^{2}}}{2} +a_{1}x_{1}+bx_{1}q_{s}Tx_{1}-f_{1}\right) l\\ &&~~+\!\left( \!-\frac{{x_{0}^{2}}}{2} + a_{0}x_{0} + bx_{0}q_{s} + Tx_{0} - f_{0}\!\right) \!\left( 1 - l\right)\\ &&\text{ \ \ \ \ \ \ \ \ \ \ \!}+\lambda \left( l-\alpha q_{s}\right) \\ &&~~~\text{s.t.}\text{: } \text{ }0\leq l\leq 1 \end{array} $$
(21)

and

$$ \left\{\begin{array}{c} {\dot{\lambda}=\delta \lambda -bx_{1}l-bx_{0}\left( 1-l\right) +\alpha \lambda }\\ {\dot{q}_{s}=l-\alpha q_{s}} \end{array}\right. $$
(22)

along with the transversality conditions: \(\underset {t\rightarrow \infty }{\lim }\lambda _{so}(t)\geq 0\) and \(\underset {t\rightarrow \infty }{\lim } \lambda _{so}(t)q_{s,so}(t)= 0\).

In terms of the Lagrangian, problem (21) means:

$$ \left\{\begin{array}{c} {x_{1}=a_{1}+bq_{s}+T}\\ {x_{0}=a_{0}+bq_{s}+T} \end{array}\right. $$
(23)

and

$$ \left\{\begin{array}{c} \frac{\partial \pi_{1}}{\partial l}+Tx_{1}+\lambda -\frac{\partial \pi_{0}}{\partial \left( 1-l\right) }-Tx_{0}-\psi \leq 0,\text{ } l\geq 0,\\\text{ }l\left( \frac{\partial \pi_{1}}{\partial l}+Tx_{1}+\lambda - \frac{\partial \pi_{0}}{\partial \left( 1-l\right) }-Tx_{0}-\psi \right) = 0\\ {1-l\geq 0,\text{ }\psi \geq 0,\text{ }\psi \left( 1-l\right) = 0} \end{array}\right. $$
(24)

Comparing Eqs. 23 and 24 with Eqs. 14 and 15, we see that the optimum of function (20) coincides with the socially optimal optimum when \(T:=-\frac {c}{\delta +\gamma }(=\mu )\).

Appendix 8: Proof of Proposition 6

For the sake of clarity, we assume that the set of parameters is such that x1, mμ and x0, mμ are always positive (the subscript mμ denotes the myopic case in which a tax on nitrogen is introduced). From problem (18), we form a new optimization function, similar to a Lagrangian:

$$ \begin{array}{@{}rcl@{}} {\Phi} &:=&\left( -\frac{{x_{1}^{2}}}{2}+a_{1}x_{1}+bx_{1}q_{s}-f_{1}+\mu x_{1}\right) l\\&&+\left( -\frac{{x_{0}^{2}}}{2}+a_{0}x_{0}+bx_{0}q_{s}-f_{0}+\mu x_{0}+\phi \right) \left( 1-l\right)\\ \end{array} $$
(25)

The first-order conditions (FOC):

$$ \left\{\begin{array}{c} {x_{1}=a_{1}+bq_{s}+\mu }\\ {x_{0}=a_{0}+bq_{s}+\mu } \end{array}\right. $$
(26)

along with the Khun-Tucker conditions (KTC):

$$ \left\{\begin{array}{c} \frac{\partial \pi_{1}}{\partial l}+\mu x_{1}-\frac{\partial \pi_{0}}{\partial \left( 1-l\right) }-\mu x_{0}-\phi \leq 0,\text{ }l\geq 0,\\ l\left( \frac{\partial \pi_{1}}{\partial l}+\mu x_{1}-\frac{ \partial \pi_{0}}{\partial \left( 1-l\right) }-\mu x_{0}-\phi \right) = 0\\ {1-l\geq 0,\text{ }\phi \geq 0,\text{ }\phi \left( 1-l\right) = 0} \end{array}\right. $$
(27)

define the optimal solution of problem (18).

Three cases are to be distinguished.

  • Case 1: l = 0 and 1 − l > 0.We deduce from KTC in Eq. 27 that, in this case, ϕ = 0 and \(\frac {\partial \pi _{1}}{\partial l}+\mu x_{1}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }-\mu x_{0}\leq 0\).The solution of problem (18) then satisfies: x0 = a0 + bqs + μ and x1 = 0.

  • Case 2: l > 0 and 1 − l = 0.We deduce from KTC in Eq. 27 that, in this case, \(\frac {\partial \pi _{1}}{\partial l}+\mu x_{1}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }-\mu x_{0}-\phi = 0\) and ϕ ≥ 0, which means that \(\frac {\partial \pi _{1}}{\partial l}+\mu x_{1}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }-\mu x_{0}\geq 0\).The solution of problem (18) then satisfies: x1 = a1 + bqs + μ and x0 = 0.

  • Case 3: l > 0 and 1 − l > 0.We deduce from KTC in Eq. 27 that, in this case, ϕ = 0 and \(\frac {\partial \pi _{1}}{\partial l}+\mu x_{1}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }-\mu x_{0}= 0\).If we put this into Eq. 25, we obtain \(L_{3}=-\frac { {x_{0}^{2}}}{2}+a_{0}x_{0}+bx_{0}q_{s}-f_{0}+\mu \left (x_{0}-\beta q_{s}-\gamma s_{w}\right ) \) which is equivalent to case 1. Therefore, case 3 never occurs which indicates that discontinuities may arise.

Consequently, we focus on each of the solutions for l and furthermore assume that the set of parameters is such that the solution is the same along the entire time path.

For a set of parameters such that l = 0 ∀t ≥ 0, i.e. \(\frac {\partial \pi _{1}}{\partial l}+\mu x_{1}<\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }+\mu x_{0}\)t ≥ 0, the farmer never cultivates cover crops and x1, mμ0 = 0. Furthermore, we know from the FOC that x0, mμ0 = a0 + bqs, mμ0 + μ. Incorporating these values into both dynamics of soil quality in Eq. 2 and water pollution in Eq. 3 we obtain the following dynamic system:

$$ \left( \begin{array}{c} \dot{q}_{s,m0} \\ \dot{s}_{w,m0} \end{array}\right) = \left( \begin{array}{cc} -\alpha & 0 \\ b-\beta & -\gamma \end{array}\right) \left( \begin{array}{c} q_{s,m0} \\ s_{w,m0} \end{array}\right) + \left( \begin{array}{c} 0 \\ a_{0}+\mu \end{array}\right) $$
(28)

Following the same resolution process as in Proposition 1, we obtain the following paths:

$$ \begin{array}{@{}rcl@{}} q_{s,m\mu 0}(t)\! & = &\! q_{s}(0)e^{-\alpha t}=q_{s,so0}(t)<q_{s,so1}(t)\\ x_{0,m\mu 0}(t)\! & = &\! a_{0}+bq_{s}(0)e^{-\alpha t}+\mu =x_{0,so0}(t)<x_{1,so1}(t)\\ s_{w,m\mu 0}(t)\! & = &\! \left( s_{w}(0)-\frac{(b-\beta )q_{s}(0)}{\gamma -\alpha }- \frac{a_{0}+\mu }{\gamma }\right) e^{-\gamma t}\\ &&+\frac{(b-\beta )q_{s}(0)}{ \gamma -\alpha }e^{-\alpha t}+\frac{a_{0}+\mu }{\gamma }=s_{w,so0}(t)\\ &&\underset{t\rightarrow \infty }{\lim }\left( s_{w,so1}(t)-s_{w,m\mu 0}(t)\right)\\ & = &\! \underset{t\rightarrow \infty }{\lim }\left\{ s_{w,m0}(t)\mid_{a_{0}=a_{1}}+\frac{b-\beta}{\alpha \gamma (\gamma -\alpha )}\right.\\ &&{\kern17pt}\left.\vphantom{\frac{b-\beta}{\alpha \gamma (\gamma -\alpha )}}\times\!\left[\! \alpha\! \left( {\kern-.5pt} e^{-\gamma t}\! -\! 1{\kern-.5pt}\right) \! +\! \gamma\! \left( {\kern-.5pt}1\! -\! e^{-\alpha t}\right)\! \right] \! -\! s_{w,m0}(t)\right\} \\ & = &\!\frac{a_{1}}{\gamma }+\frac{b-\beta }{\alpha \gamma }-\frac{a_{0}}{\gamma }<0\Leftrightarrow a_{1}-a_{0}<\frac{ \beta -b}{\alpha} \end{array} $$

For a set of parameters such that l = 1 ∀t ≥ 0, i.e. \(\frac {\partial \pi _{1}}{\partial l}+\mu x_{1}>\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }+\mu x_{0}\)t ≥ 0, the farmer cultivates cover crops on all his land and, consequently, x0, mμ1 = 0. We obtain the following dynamic system:

$$ \left( \begin{array}{c} \dot{q}_{s,m1} \\ \dot{s}_{w,m1} \end{array}\right) = \left( \begin{array}{cc} -\alpha & 0 \\ b-\beta & -\gamma \end{array}\right) \left( \begin{array}{c} q_{s,m1} \\ s_{w,m1} \end{array}\right) + \left( \begin{array}{c} 1 \\ a_{1}+\mu \end{array}\right) $$
(29)

Following the same resolution process as in Proposition 2, we obtain the following paths:

$$ \begin{array}{@{}rcl@{}} q_{s,m\mu 1}(t)&=&q_{s}(0)e^{-\alpha t}+\frac{1}{\alpha }\left( 1-e^{-\alpha t}\right) =q_{s,so1}(t)\\ x_{1,m\mu 1}(t)&=&a_{1}+bq_{s}(0)e^{-\alpha t}+\frac{b}{\alpha }\left( 1-e^{-\alpha t}\right) +\mu =x_{1,so1}(t) \end{array} $$
$$ \begin{array}{@{}rcl@{}} s_{w,m\mu 1}(t)&=&\left( s_{w}(0)-\frac{(b-\beta )q_{s}(0)}{\gamma -\alpha }- \frac{a_{1}+\mu }{\gamma }\right) e^{-\gamma t}\\ &&+\frac{(b-\beta )q_{s}(0)}{\gamma -\alpha }e^{-\alpha t}+\frac{a_{1}+\mu }{\gamma }\\&&+\frac{b-\beta }{\alpha \gamma \!(\gamma - \alpha )}\!\left[ \alpha \!\left( e^{-\gamma t} - 1\right) + \gamma \!\left( 1 - e^{-\alpha t}\right) \right] \!=s_{w,so1}(t) \end{array} $$

Comparison between this taxation case and the socially optimal solution in the stylized example are direct from comparisons already made in the text.

The set of parameters such that cultivating cover crops is preferred by the myopic farmer incurring a nitrogen tax is given by the so-called bang-bang condition, \(\frac {\partial \pi _{1}}{\partial l}-\frac {\partial \pi _{0}}{ \partial \left (1-l\right ) }+\mu \left (x_{1}-x_{0}\right ) >0\).

For instance, at the initial time t = 0,

$$ \begin{array}{@{}rcl@{}} \frac{\partial \pi_{1}(0)}{\partial l}\! &-&\! \frac{\partial \pi_{0}(0)}{\partial \left( 1-l\right) }+\mu \left( x_{1}(0)-x_{0}(0)\right)\\ &=&\! -\frac{ {x_{1}^{2}}(0)}{2}{\kern-.5pt}+{\kern-.5pt}a_{1}x_{1}(0){\kern-.5pt}+{\kern-.5pt}bx_{1}(0)q_{s}(0){\kern-.5pt}-{\kern-.5pt}f_{1}+\frac{{x_{0}^{2}}(0)}{2}\\ &&-a_{0}x_{0}(0)-bx_{0}(0)q_{s}(0)\\&&+f_{0}+\mu \left( x_{1}(0)-x_{0}(0)\right) \\ &=&\! -\frac{\left( a_{1}+bq_{s}(0)\right)^{2}}{2}+{a_{1}^{2}}-\frac{\left( a_{0}+bq_{s}(0)\right)^{2}}{2}-{a_{0}^{2}}\\ &&+\left( a_{1}-a_{0}\right) \left( 2bq_{s}(0)+\mu \right) +f_{0}-f_{1}\\ &=&\!\frac{1}{2} (a_{1}\! -\! a_{0})\!\left( \! a_{1}\! + \!a_{0}\! +\! 2bq_{s}(0)\! -\! \frac{2c}{\delta +\gamma }\!\right) \! +\! f_{0}\! -\! f_{1}. \end{array} $$

After standard computations, the bang-bang necessary condition can be rewritten: \(F_{m\mu }:=\frac {{\Xi }_{1}^{2}}{2}-f_{1}-\frac {{\Xi }_{0}^{2}}{2} +f_{0}>0\).

Appendix 9: Proof of Proposition 7

For the sake of clarity, we assume that the set of parameters is such that x1, mλ and x0, mλ are always positive (the subscript mλ denotes the myopic case in which a subsidy on cover crops is introduced). From problem (19), we form a new optimization function, similar to a Lagrangian:

$$ \begin{array}{@{}rcl@{}} {\Phi} &:=&\left( -\frac{{x_{1}^{2}}}{2}+a_{1}x_{1}+bx_{1}q_{s}-f_{1}\right) l\\&&+\left( -\frac{{x_{0}^{2}}}{2}+a_{0}x_{0}+bx_{0}q_{s}-f_{0}+\phi \right) \left( 1-l\right) +\lambda l\\ \end{array} $$
(30)

The FOC:

$$ \left\{\begin{array}{c} {x_{1}=a_{1}+bq_{s}}\\ {x_{0}=a_{0}+bq_{s}} \end{array}\right. $$
(31)

along with the KTC:

$$ \left\{\begin{array}{c} {\frac{\partial \pi_{1}}{\partial l}-\frac{\partial \pi_{0}}{\partial \left( 1-l\right) } - \phi +\lambda \!\leq\! 0,\text{ }l\!\geq\! 0, l\left( \frac{\partial \pi_{1}}{\partial l} - \frac{\partial \pi_{0}}{\partial \left( 1-l\right) } - \phi +\lambda \right) = 0}\\ {1-l\geq 0,\text{ } \phi \geq 0,\text{ }\phi \left( 1-l\right) = 0} \end{array}\right. $$
(32)

define the optimal solution of problem (19).

Three cases are to be distinguished.

  • Case 1: l = 0 and 1 − l > 0.We deduce from KTC in Eq. 32 that, in this case, ϕ = 0 and \(\frac {\partial \pi _{1}}{\partial l}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }+\lambda \leq 0\).The solution of problem (19) then satisfies: x0 = a0 + bqs and x1 = 0.

  • Case 2: l > 0 and 1 − l = 0.We deduce from KTC in Eq. 32 that, in this case, \(\frac {\partial \pi _{1}}{\partial l}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }-\phi +\lambda = 0\) and ϕ ≥ 0, which means that \(\frac {\partial \pi _{1}}{\partial l}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }+\lambda \geq 0\).The solution of problem (19) then satisfies: x1 = a1 + bqs and x0 = 0.

  • Case 3: l > 0 and 1 − l > 0.We deduce from KTC in Eq. 32 that, in this case, ϕ = 0 and \(\frac {\partial \pi _{1}}{\partial l}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }+\lambda = 0\).If we put this into Eq. 30, we obtain \(L_{3}=-\frac { {x_{0}^{2}}}{2}+a_{0}x_{0}+bx_{0}q_{s}-f_{0}+\lambda l\) which is equivalent to case 1. Therefore, case 3 never occurs which indicates that discontinuities may arise.

Consequently, we focus on each of the solutions for l and furthermore assume that the set of parameters is such that the solution is the same along the entire time path.

For a set of parameters such that l = 0 ∀t ≥ 0, i.e. \(\frac {\partial \pi _{1}}{\partial l}+\lambda <\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }\)t ≥ 0, the farmer never cultivates cover crops and x1, mλ0 = 0. The optimal paths are given by Proposition 1 and:

$$ \begin{array}{@{}rcl@{}} q_{s,so1}(t) & - & q_{s,m\lambda 0}(t) = \frac{1}{\alpha }\left( 1-e^{-\alpha t}\right) >0\\ x_{1,so1}(t)& - & x_{0,m\lambda 0}(t)\\ &=&a_{1}+\frac{b}{\alpha }\left( 1-e^{-\alpha t}\right) -\frac{c}{\delta +\gamma }-a_{0}>0\\ &&\Leftrightarrow a_{1}-a_{0}> \frac{c}{\delta +\gamma}-\frac{b}{\alpha }\left( 1-e^{-\alpha t}\right)\\ s_{w,so1}(t) & - & s_{w,m\lambda 0}(t)\\ & = & \left( s_{w}(0)+\frac{\left( \gamma q_{s}(0)-1\right) (b-\beta )}{\gamma \left( \alpha -\gamma \right) }\right.\\ &&{\kern5pt}\left. -\frac{ a_{1}}{\gamma }+\frac{c}{\gamma (\delta +\gamma )}\right) e^{-\gamma t}\\ &&- \frac{(\alpha q_{s}(0)-1)(b-\beta )}{\alpha (\alpha -\gamma )}e^{-\alpha t}+ \frac{a_{1}}{\gamma }\\&&+\frac{b-\beta }{\alpha \gamma}-\frac{c}{\gamma (\delta +\gamma )}\\ && -\left( s_{w}(0)-\frac{(b-\beta )q_{s}(0)}{\gamma -\alpha } -\frac{a_{0}}{\gamma }\right) e^{-\gamma t}\\ &&-\frac{(b-\beta )q_{s}(0)}{\gamma -\alpha}e^{-\alpha t}-\frac{a_{0}}{\gamma }\\ \end{array} $$
$$ \begin{array}{@{}rcl@{}} & = & \left( \frac{\left( \gamma q_{s}(0)-1\right) (b-\beta )}{\gamma \left( \alpha -\gamma \right) }+\frac{ (b-\beta )q_{s}(0)}{\gamma -\alpha}\right.\\ &&~~\left.+\frac{a_{0}}{\gamma }-\frac{a_{1}}{ \gamma }+\frac{c}{\gamma (\delta +\gamma )}\right) e^{-\gamma t}\\ && +\left( \! -\! \frac{(b\! -\! \beta )q_{s}(0)}{\gamma -\alpha }\! -\! \frac{(\alpha q_{s}(0)\! -\! 1)(b\! -\! \beta )}{\alpha (\alpha -\gamma )}\right) e^{-\alpha t}\\ &&+\frac{a_{1}}{\gamma }- \frac{a_{0}}{\gamma }+\frac{b-\beta }{\alpha \gamma }-\frac{c}{\gamma (\delta +\gamma )}\\ & = &\ \left( \frac{\beta -b}{\gamma \left( \alpha -\gamma \right) }+\frac{a_{0}-a_{1}}{\gamma }+\frac{c}{\gamma (\delta +\gamma )}\right) e^{-\gamma t}\\ &&+\frac{(b-\beta )}{\alpha (\alpha\! -\! \gamma )} e^{-\alpha t}\! +\! \frac{a_{1}\! -\! a_{0}}{\gamma }\! +\! \frac{b\! -\! \beta }{\alpha \gamma }\! -\! \frac{c}{\gamma (\delta +\gamma )} \end{array} $$

At the steady state, this last difference is given by:

$$ \begin{array}{@{}rcl@{}} &&\underset{ t\rightarrow \infty }{\lim }(s_{w,so1}(t)-s_{w,m\lambda 0}(t))\\ &&=\frac{ a_{1}-a_{0}}{\gamma }+\frac{b-\beta }{\alpha \gamma }-\frac{c}{\gamma (\delta +\gamma )}<0\\ &&\Leftrightarrow a_{1}-a_{0}<\frac{c}{\delta +\gamma }+ \frac{\beta -b}{\alpha}. \end{array} $$

Note that it is impossible to both have \(\underset {t\rightarrow \infty }{ \lim }\left (x_{1,so1}(t)-x_{0,m\lambda 0}(t)\right ) <0\) and \(\underset { t\rightarrow \infty }{\lim }(s_{w,so1}(t)-s_{w,m\lambda 0}(t))>0\) since this translates into \(\frac {c}{\delta +\gamma }+\frac {\beta -b}{\alpha } <a_{1}-a_{0}<\frac {c}{\delta +\gamma }-\frac {b}{\alpha }\) which is satisfied only for β < 0. Furthermore, \(a_{1}-a_{0}<\frac {c}{\delta +\gamma }- \frac {b}{\alpha }\Rightarrow a_{1}-a_{0}<\frac {c}{\delta +\gamma }-\frac {b}{ \alpha }\left (1-e^{-\alpha t}\right ) \) and \(a_{1}-a_{0}<\frac {c}{\delta +\gamma }+\frac {\beta -b}{\alpha }\).

Note also that \(a_{1}-a_{0}>\frac {c}{\delta +\gamma }+\frac {\beta }{\alpha } \Rightarrow a_{1}-a_{0}>\frac {c}{\delta +\gamma }-\frac {b}{\alpha }\left (1-e^{-\alpha t}\right ) \) and \(a_{1}-a_{0}>\frac {c}{\delta +\gamma }+\frac { \beta }{\alpha }-\frac {b}{\alpha }\). And that \(\frac {c}{\delta +\gamma }+ \frac {\beta -b}{\alpha }>a_{1}-a_{0}>\frac {c}{\delta +\gamma }\Rightarrow a_{1}-a_{0}>\frac {c}{\delta +\gamma }-\frac {b}{\alpha }\left (1-e^{-\alpha t}\right )\).

For a set of parameters such that l = 1 ∀t ≥ 0, i.e. \(\frac {\partial \pi _{1}}{\partial l}+\lambda >\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }\)t ≥ 0, the farmer cultivates cover crops on all his land and, consequently, x0, mλ1 = 0. The optimal paths are given by Proposition 2. In this case, the comparison of the paths obtained with the paths in the socially optimal case is the same as in the standard case.

The set of parameters such that cultivating cover crops is preferred by the myopic farmer subsidized for cultivating cover crops is given by the so-called bang-bang condition, \(\frac {\partial \pi _{1}}{\partial l}-\frac {\partial \pi _{0}}{\partial \left (1-l\right ) }+\lambda >0\).

For instance, at the initial time t = 0,

$$ \begin{array}{@{}rcl@{}} \frac{\partial \pi_{1}(0)}{\partial l}\! -\! \frac{\partial \pi_{0}(0)}{\partial \left( 1-l\right) }+\lambda\! & = &\! -\frac{{x_{1}^{2}}(0)}{2} \! +\! a_{1}x_{1}(0)\! +\! bx_{1}(0)q_{s}(0)\\ &&-f_{1}+\frac{{x_{0}^{2}}(0)}{2}-a_{0}x_{0}(0)\\ &&-bx_{0}(0)q_{s}(0)+f_{0}+\lambda\\ &=&\! \frac{{a_{1}^{2}}}{2}\! +\! a_{1}bq_{s}(0)-\frac{{a_{0}^{2}}}{2}-a_{0}bq_{s}(0)\\ &&+f_{0}-f_{1}+\lambda\\ &=&\!\frac{1}{2}\left( a_{1}-a_{0}\right) \left( a_{1}+a_{0}+ 2bq_{s}(0)\right)\\ &&+f_{0}-f_{1}+\lambda. \end{array} $$

After standard computations, the bang-bang necessary condition can be rewritten: \(F_{m\lambda }:=\frac {\chi _{1}^{2}}{2}-f_{1}-\frac {\chi _{0}^{2} }{2}+f_{0}\) + λ > 0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, E. Cover Crops and Water Quality. Environ Model Assess 24, 605–623 (2019). https://doi.org/10.1007/s10666-019-09657-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-019-09657-x

Keywords

Navigation