Skip to main content

Advertisement

Log in

Air Pollutant Concentration Forecast Based on Support Vector Regression and Quantum-Behaved Particle Swarm Optimization

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In order to improve the forecasting accuracy of atmospheric pollutant concentration, a prediction model of atmospheric PM2.5 and nitrogen dioxide (NO2) concentration based on support vector regression (SVR) is established. Quantum-behaved particle swarm optimization (QPSO) algorithm is used to select the optimal parameters influencing the performance of SVR. And in order to improve the problem that the fixed SVR model is difficult to adapt to the highly nonlinear process, a simple online SVR based on re-modeling method is proposed instead of the fixed one. According to hourly PM2.5 and NO2 concentrations and meteorological conditions from May 2014 to April 2015 in Wanliu Monitoring Station of Beijing in China, the experiment is carried out based on the data of 3 months. Meanwhile, PM2.5 concentration is predicted by three different prediction methods, including the recursive prediction method, direct prediction method, and online direct prediction method. The results show that the online direct prediction method is the most accurate in the three prediction methods. In addition, compared with original particle swarm optimization (PSO) algorithm, QPSO algorithm is tested more efficiently for the improvement of global search ability and robustness during the procedure of parameter selection. Moreover, the hybrid QPSO-SVR model proposed in this paper has higher prediction accuracy and less computational time compared with the PSO-SVR model, genetic algorithm (GA)-SVR model, and grid search (GS)-SVR model, which indicates reliability and effectiveness of the QPSO-SVR model in prediction of these two pollutant concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ARMA:

Autoregressive moving average

ANN:

Artificial neural network

SVM:

Support vector machine

SVR:

Support vector regression

PLS:

Partial least squares

PSO:

Particle swarm optimization

QPSO:

Quantum-behaved particle swarm optimization

GA:

Genetic algorithm

GS:

Grid search

PM:

Particulate matter

NO2 :

Nitrogen dioxide

CO:

Carbon monoxide

CO2 :

Carbon dioxide

SO2 :

Sulfur dioxide

CH4 :

Methane

NOx :

Nitrogen oxides

O3 :

Ozone

References

  1. Andrew, A.M. (2001). An introduction to support vector machines and other kernel-based learning methods. Robotica, 18(6), 687–689.

    Google Scholar 

  2. Arabgol, R., Sartaj, M., Asghari, K. (2016). Predicting nitrate concentration and its spatial distribution in groundwater resources using support vector machines (svms) model. Environmental Modeling & Assessment, 21(1), 71–82.

    Article  Google Scholar 

  3. Bagheri, A., Peyhani, H.M., Akbari, M. (2014). Financial forecasting using ANFIS networks with quantum-behaved particle swarm optimization. Expert Systems with Applications, 41(14), 6235–6250.

    Article  Google Scholar 

  4. Bai, Y., Li, Y., Wang, X., Xie, J., Li, C. (2016). Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmospheric Pollution Research, 7(3), 557–566.

    Article  Google Scholar 

  5. Bamakan, S.M.H., Wang, H., Ravasan, A.Z. (2016). Parameters optimization for nonparallel support vector machine by particle swarm optimization. Procedia Computer Science, 91, 482–491.

    Article  Google Scholar 

  6. Beckerman, B.S., Jerrett, M., Serre, M., Martin, R.V., Lee, S.J., Van, D.A., Ross, Z., Su, J., Burnett, R.T. (2013). A hybrid approach to estimating national scale spatiotemporal variability of PM2.5 in the contiguous united states. Environmental Science & Technology, 47(13), 7233–41.

    Article  CAS  Google Scholar 

  7. Ch, S., Anand, N., Panigrahi, B.K., Mathur, S. (2013). Streamflow forecasting by SVM with quantum behaved particle swarm optimization. Neurocomputing, 101(3), 18–23.

    Article  Google Scholar 

  8. Chen, R., Samoli, E., Wong, C.M., Huang, W., Wang, Z., Chen, B., Kan, H., Group, C.C. (2012). Associations between short-term exposure to nitrogen dioxide and mortality in 17 chinese cities: the China air pollution and health effects study (capes). Environmental Research, 45(14), 32–38.

    CAS  Google Scholar 

  9. Chiusolo, M., Cadum, E., Galassi, C., Stafoggia, M., Berti, G. (2009). Short term effects of nitrogen dioxide exposure on mortality and susceptibility factors. Epidemiology, 20(6), S67.

    Article  Google Scholar 

  10. De, G.G., Trizio, L., Di, G.A., Pey, J., Pérez, N., Cusack, M., Alastuey, A., Querol, X. (2013). Neural network model for the prediction of PM10 daily concentrations in two sites in the western mediterranean. Science of the Total Environment, 463-464(5), 875.

    Google Scholar 

  11. Dijkema, M.B., van Strien, R.T., Sc, V.D.Z., Mallant, S.F., Fischer, P., Hoek, G., Brunekreef, B., Gehring, U. (2016). Spatial variation in nitrogen dioxide concentrations and cardiopulmonary hospital admissions. Environmental Research, 151, 721–727.

    Article  CAS  Google Scholar 

  12. Dong, Z., Yang, D., Reindl, T., Walsh, W.M. (2015). A novel hybrid approach based on self-organizing maps, support vector regression and particle swarm optimization to forecast solar irradiance. Energy, 82, 570–577.

    Article  Google Scholar 

  13. Donnelly, A., Misstear, B., Broderick, B. (2015). Real time air quality forecasting using integrated parametric and non-parametric regression techniques. Atmospheric Environment, 103(103), 53–65.

    Article  CAS  Google Scholar 

  14. Fang, S.F., Wang, M.P., Qi, W.H., Zheng, F. (2008). Hybrid genetic algorithms and support vector regression in forecasting atmospheric corrosion of metallic materials. Computational Materials Science, 44(2), 647–655.

    Article  CAS  Google Scholar 

  15. Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J. (2015). Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmospheric Environment, 107, 118–128.

    Article  CAS  Google Scholar 

  16. Gorai, A.K., & Mitra, G. (2016). A comparative study of the feed forward back propagation (FFBP) and layer recurrent (LR) neural network model for forecasting ground level ozone concentration. Air Quality Atmosphere & Health, pp. 1–11.

  17. Ishak, A.B., Moslah, Z., Trabelsi, A. (2016). Analysis and prediction of PM10 concentration levels in Tunisia using statistical learning approaches. Environmental and Ecological Statistics, 23(3), 1–22.

    Google Scholar 

  18. Ji, Y., Hao, J., Reyhani, N., Lendasse, A. (2005). Direct and recursive prediction of time series using mutual information selection. Berlin: Springer.

    Book  Google Scholar 

  19. Juhos, I., Makra, L., Tóth, B. (2008). Forecasting of traffic origin NO and NO2 concentrations by support vector machines and neural networks using principal component analysis. Simulation Modelling Practice and Theory, 16(9), 1488–1502.

    Article  Google Scholar 

  20. Juodis, L., Filistovič, V., Maceika, E., Remeikis, V. (2016). Analytical dispersion model for the chain of primary and secondary air pollutants released from point source. Atmospheric Environment, 128, 216–226.

    Article  CAS  Google Scholar 

  21. Kavousi-Fard, A., Samet, H., Marzbani, F. (2014). A new hybrid modified firefly algorithm and support vector regression model for accurate short term load forecasting. Expert Systems with Applications, 41(13), 6047–6056.

    Article  Google Scholar 

  22. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In IEEE International conference on neural networks, 1995. proceedings, (Vol. 4 pp. 1942–1948).

  23. Kennedy, J., & Eberhart, R. (2011). Particle swarm optimization Vol. 4. USA: Springer.

    Google Scholar 

  24. Krewski, D., & Rainham, D. (2007). Ambient air pollution and population health: overview. Journal of Toxicology and Environmental Health, Part A, 70(3-4), 275–283.

    Article  CAS  Google Scholar 

  25. Kumar, U., & Jain, V.K. (2010). Arima forecasting of ambient air pollutants (O3, NO, NO2 and CO). Stochastic Environmental Research and Risk Assessment, 24(5), 751–760.

    Article  Google Scholar 

  26. Lin, K.P., Pai, P.F., Yang, S.L. (2011). Forecasting concentrations of air pollutants by logarithm support vector regression with immune algorithms. Applied Mathematics and Computation, 217(12), 5318–5327.

    Article  Google Scholar 

  27. Malik, M.A., Jiang, C., Heller, R., Lane, J., Hughes, D., Schoenbach, K.H. (2016). Ozone-free nitric oxide production using an atmospheric pressure surface discharge – a way to minimize nitrogen dioxide co-production. Chemical Engineering Journal, 283, 631–638.

    Article  CAS  Google Scholar 

  28. Moazami, S., Noori, R., Amiri, B.J., Yeganeh, B., Partani, S., Safavi, S. (2016). Reliable prediction of carbon monoxide using developed support vector machine. Atmospheric Pollution Research, 7(3), 412–418.

    Article  Google Scholar 

  29. Moustris, K.P., & Ziomas, I.C. (2010). Paliatsos, A.G.: 3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in athens, greece. Water, Air, & Soil Pollution, 209(1), 29–43.

    Article  CAS  Google Scholar 

  30. Niu, M., Wang, Y., Sun, S., Li, Y. (2016). A novel hybrid decomposition-and-ensemble model based on CEEMD and GWO for short-term PM2.5 concentration forecasting. Atmospheric Environment, 134, 168–180.

    Article  CAS  Google Scholar 

  31. Omkar, S.N., Khandelwal, R., Ananth, T.V.S., Narayana Naik, G., Gopalakrishnan, S. (2009). Quantum behaved particle swarm optimization (QPSO) for multi-objective design optimization of composite structures. Expert Systems with Applications, 36 (8), 11,312–11,322.

    Article  Google Scholar 

  32. Ortiz-García, E. G., Salcedo-Sanz, S., Pérez-Bellido, M., Portilla-Figueras, J.A., Prieto, L. (2010). Prediction of hourly O3 concentrations using support vector regression algorithms. Atmospheric Environment, 44(35), 4481–4488.

    Article  CAS  Google Scholar 

  33. Pai, P.F., & Hong, W.C. (2005). Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management, 46(17), 2669–2688.

    Article  Google Scholar 

  34. Pan, L., Sun, B., Wang, W. (2011). City air quality forecasting and impact factors analysis based on grey model. Procedia Engineering, 12, 74–79.

    Article  CAS  Google Scholar 

  35. Pei, J., Liu, X., Pardalos, P.M., Fan, W., Yang, S. (2017). Scheduling deteriorating jobs on a single serial-batching machine with multiple job types and sequence-dependent setup times. Annals of Operations Research, 249(1-2), 175–195.

    Article  Google Scholar 

  36. Pei, J., Pardalos, P.M., Liu, X., Fan, W., Yang, S. (2015). Serial batching scheduling of deteriorating jobs in a two-stage supply chain to minimize the makespan. European Journal of Operational Research, 244(1), 13–25.

    Article  Google Scholar 

  37. Reyes, J.M., & Serre, M.L. (2014). An LUR/BME framework to estimate PM2.5 explained by on road mobile and stationary sources. Environmental Science & Technology, 48(3), 1736–44.

    Article  CAS  Google Scholar 

  38. Ridder, K.D., Kumar, U., Lauwaet, D., Blyth, L., Lefebvre, W. (2012). Kalman filter-based air quality forecast adjustment. Atmospheric Environment, 50(4), 381–384.

    Article  CAS  Google Scholar 

  39. Schölkopf, B. (2008). The nature of statistical learning theory springer.

  40. Song, X., Liu, Y., Hu, Y., Zhao, X., Tian, J., Ding, G., Wang, S. (2016). Short-term exposure to air pollution and cardiac arrhythmia: a meta-analysis and systematic review. International Journal of Environmental Research and Public Health, 13(7), 642.

    Article  CAS  Google Scholar 

  41. Song, Y., Qin, S., Qu, J., Liu, F. (2015). The forecasting research of early warning systems for atmospheric pollutants: a case in yangtze river delta region. Atmospheric Environment, 118(118), 58–69.

    Article  CAS  Google Scholar 

  42. Sun, J., Feng, B., Xu, W. (2004). Particle swarm optimization with particles having quantum behavior. In 2004. CEC2004. Congress on evolutionary computation, (Vol. 1 pp. 325–331).

  43. Sun, W., & Sun, J. (2016). Daily PM2.5 concentration prediction based on principal component analysis and LSSVM optimized by cuckoo search algorithm. Journal of environmental management, 188, 144–152.

    Article  CAS  Google Scholar 

  44. Suresha, C.M., Lakshminarayanachari, K., Prasad, M.S., Pandurangappa, C. (2012). Advection - diffusion numerical model of an air pollutant emitted from an area source of primary pollutant with chemical reaction and dry deposition. International Journal of Engineering Science and Technology, 4(1), 82–97.

    Google Scholar 

  45. Vlachogianni, A., Kassomenos, P., Karppinen, A., Karakitsios, S., Kukkonen, J. (2011). Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in athens and helsinki. Science of the Total Environment, 409(8), 1559–1571.

    Article  CAS  Google Scholar 

  46. Wang, J., Hou, R., Wang, C., Shen, L. (2016). Improved μ-support vector regression model based on variable selection and brain storm optimization for stock price forecasting. Applied Soft Computing, 49, 164–178.

    Article  Google Scholar 

  47. Wang, S. (2012). Air quality management in china:issues,challenges,and options. Journal of Environmental Sciences, 24(1), 2–13.

    Article  CAS  Google Scholar 

  48. Xu, Y., Yang, W., Wang, J. (2016). Air quality early-warning system for cities in China. Atmospheric Environment.

  49. Yeganeh, B., Motlagh, M.S.P., Rashidi, Y., Kamalan, H. (2012). Prediction of CO concentrations based on a hybrid partial least square and support vector machine model. Atmospheric Environment, 55(3), 357–365.

    Article  CAS  Google Scholar 

  50. Miao, Y., Liu, S., Zheng, Y, Wang, S, Liu, Z, Zhang, B. (2015). Numerical study of the effects of planetary boundary layer structure on the pollutant dispersion within built-up areas. Journal of Environmental Sciences, 32(6), 168–179.

    Article  Google Scholar 

  51. Zhang, H., Wang, S., Hao, J., Wang, X., Wang, S., Chai, F., Li, M. (2016). Air pollution and control action in Beijing. Journal of Cleaner Production, 112, 1519–1527.

    Article  CAS  Google Scholar 

  52. Zhang, J., Tittel, F.K., Gong, L., Lewicki, R., Griffin, R.J., Jiang, W., Jiang, B., Li, M. (2016). Support vector machine modeling using particle swarm optimization approach for the retrieval of atmospheric ammonia concentrations. Environmental Modeling & Assessment, 21(4), 531–546.

    Article  Google Scholar 

  53. Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A. (2012). Real-time air quality forecasting, part i: history, techniques, and current status. Atmospheric Environment, 60(32), 632–655.

    Article  CAS  Google Scholar 

  54. Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C., Baklanov, A. (2012). Real-time air quality forecasting, part ii: State of the science, current research needs, and future prospects. Atmospheric Environment, 60 (6), 656–676.

    Article  CAS  Google Scholar 

  55. Zhao, R., Chen, S., Wang, W., Huang, J., Wang, K., Liu, L., Wei, S. (2017). The impact of short-term exposure to air pollutants on the onset of out-of-hospital cardiac arrest: a systematic review and meta-analysis. International Journal of Cardiology, 226, 110.

    Article  Google Scholar 

  56. Zheng, S., Yi, H., Li, H. (2015). The impacts of provincial energy and environmental policies on air pollution control in china. Renewable & Sustainable Energy Reviews, 49, 386–394.

    Article  CAS  Google Scholar 

  57. Zheng, Y., Capra, L., Wolfson, O., Yang, H. (2014). Urban computing: concepts, methodologies, and applications. ACM Transactions on Intelligent Systems and Technology, 5(3), 38.

    Google Scholar 

  58. Zheng, Y., Liu, F., Hsieh, H.P. (2013). U-air: when urban air quality inference meets big data. In ACM SIGKDD International conference on knowledge discovery and data mining (pp. 1436–1444).

  59. Zheng, Y., Yi, X., Li, M., Li, R., Shan, Z., Chang, E., Li, T. (2015). Forecasting fine-grained air quality based on big data. In The ACM SIGKDD international conference (pp. 2267–2276).

Download references

Funding

This work is supported by the Fund of National Natural Science Foundation of China (61873006, 61473034 and 61673053), Beijing Nova Programme Interdisciplinary Cooperation Project (Z161100004916041) and Project of Beijing science and technology commission: Research on key technologies of intelligent factory interconnection and industrial Internet of things equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Luo, A., Li, J. et al. Air Pollutant Concentration Forecast Based on Support Vector Regression and Quantum-Behaved Particle Swarm Optimization. Environ Model Assess 24, 205–222 (2019). https://doi.org/10.1007/s10666-018-9633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-018-9633-3

Keywords

Navigation