Skip to main content
Log in

Air Quality Modeling Using the PSO-SVM-Based Approach, MLP Neural Network, and M5 Model Tree in the Metropolitan Area of Oviedo (Northern Spain)

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

The main aim of this study was to construct several regression models of air quality using techniques based on the statistical learning, in the metropolitan area of Oviedo, in northern Spain. In this research, a hybrid particle swarm optimization-based evolutionary support vector regression is implemented to predict the air quality from the experimental dataset (specifically, nitrogen oxides, carbon monoxide, sulfur dioxide, ozone, and dust) collected from 2013 to 2015 in the metropolitan area of Oviedo. Furthermore, a multilayer perceptron network (MLP) and the M5 model tree were also fitted to the experimental dataset for comparison purposes. Finally, the predicted results show that the hybrid proposed model is more robust than the MLP and M5 model tree prediction methods in terms of statistical estimators and testing performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. García Nieto, P. J. (2001). Parametric study of selective removal of atmospheric aerosol by coagulation, condensation and gravitational settling. International Journal of Environmental Health Research, 11, 151–162.

    Article  Google Scholar 

  2. García Nieto, P. J. (2006). Study of the evolution of aerosol emissions from coal-fired power plants due to coagulation, condensation, and gravitational settling and health impact. Journal of Environmental Management, 79(4), 372–382.

    Article  CAS  Google Scholar 

  3. Lutgens, F. K., & Tarbuck, E. J. (2001). The atmosphere: an introduction to meteorology. New York: Prentice Hall.

    Google Scholar 

  4. Wark, K., Warner, C. F., & Davis, W. T. (1997). Air pollution: its origin and control. New Jersey: Prentice Hall.

    Google Scholar 

  5. Wang, L. K., Pereira, N. C., & Hung, Y. T. (2004). Air pollution control engineering. New York: Humana.

    Book  Google Scholar 

  6. Karaca, F., Alagha, O., & Ertürk, F. (2005). Statistical characterization of atmospheric PM10 and PM2.5 concentrations at a non-impacted suburban site of Istanbul, Turkey. Chemosphere, 59(8), 1183–1190.

    Article  CAS  Google Scholar 

  7. Comrie, A. C., & Diem, J. E. (1999). Climatology and forecast modeling of ambient carbon monoxide in Phoenix. Atmospheric Environment, 33, 5023–5036.

    Article  CAS  Google Scholar 

  8. Elbir, T., & Muezzinoglu, A. (2000). Evaluation of some air pollution indicators in Turkey. Environment International, 26(1–2), 5–10.

    Article  CAS  Google Scholar 

  9. Godish, T., Davis, W. T., & Fu, J. S. (2014). Air quality. Boca Raton: CRC.

    Google Scholar 

  10. Akkoyunku, A., & Ertürk, F. A. (2003). Evaluation of air pollution trends in Istanbul. International Journal of Environment and Pollution, 18, 388–398.

    Article  Google Scholar 

  11. Suárez Sánchez, A., García Nieto, P. J., Riesgo Fernández, P., del Coz Díaz, J. J., & Iglesias-Rodríguez, F. J. (2011). Application of a SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Mathematical and Computer Modelling, 54(5–6), 1453–1466.

    Article  Google Scholar 

  12. Cooper, C. D., & Alley, F. C. (2002). Air pollution control. New York: Waveland Press.

    Google Scholar 

  13. Vapnik, V. (1998). Statistical learning theory. New York: Wiley-Interscience.

    Google Scholar 

  14. Hastie, T., Tibshirani, R., & Friedman, J. (2003). The elements of statistical learning. New York: Springer.

    Google Scholar 

  15. Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Springer.

    Google Scholar 

  16. Schölkopf, B., Smola, A. J., Williamson, R., & Bartlett, P. (2000). New support vector algorithms. Neural Computing and Applications, 12(5), 1207–1245.

    Article  Google Scholar 

  17. Hansen, T., & Wang, C. J. (2005). Support vector based battery state of charge estimator. Journal of Power Sources, 141, 351–358.

    Article  CAS  Google Scholar 

  18. Li, X., Lord, D., Zhang, Y., & Xie, Y. (2008). Predicting motor vehicle crashes using support vector machine models. Accident Analysis & Prevention, 40, 1611–1618.

    Article  Google Scholar 

  19. Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support vector machines and other kernel-based learning methods. New York: Cambridge University Press.

    Book  Google Scholar 

  20. Steinwart, I., & Christmann, A. (2008). Support vector machines. New York: Springer.

    Google Scholar 

  21. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the fourth IEEE international conference on neural networks (Vol. 4, pp. 1942–1948). Perth: IEEE Service Center.

    Google Scholar 

  22. Eberhart, R. C., Shi, Y., & Kennedy, J. (2001). Swarm intelligence. San Francisco: Morgan Kaufmann.

    Google Scholar 

  23. Clerc, M. (2006). Particle swarm optimization. London: Wiley-ISTE.

    Book  Google Scholar 

  24. Olsson, A. E. (2011). Particle swarm optimization: theory, techniques and applications. New York: Nova Science Publishers.

    Google Scholar 

  25. Boznar, M., Lesjack, M., & Mlakar, P. (1993). A neural network based method for short-term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain. Atmospheric Environment, 270, 221–230.

    Google Scholar 

  26. Haykin, S. (1999). Neural networks: comprehensive foundation. New Jersey: Prentice Hall.

    Google Scholar 

  27. Hooyberghs, J., Mensink, C., Dumont, D., Fierens, F., & Brasseur, O. (2005). A neural network forecast for daily average PM10 concentrations in Belgium. Atmospheric Environment, 39(18), 3279–3289.

    Article  CAS  Google Scholar 

  28. Kukkonen, J., Partanen, L., Karpinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., & Cawley, G. (2003). Extensive evaluation of neural networks models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmospheric Environment, 37, 4539–4550.

    Article  CAS  Google Scholar 

  29. Gardner, M. W., & Dorling, S. R. (1999). Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmospheric Environment, 33(5), 709–719.

    Article  CAS  Google Scholar 

  30. Chaloulakou, A., Saisana, M., & Spyrellis, N. (2003). Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Science of the Total Environment, 313, 1–13.

    Article  CAS  Google Scholar 

  31. Karaca, F., Nikov, A., & Alagha, O. (2006). NN-AirPol: a neural-network-based method for air pollution evaluation and control. International Journal of Environment and Pollution, 28(3–4), 310–325.

    Article  CAS  Google Scholar 

  32. Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of Australian joint conference on artificial intelligence (pp. 343–348). Singapore: World Scientific Press.

  33. Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Monterrey: Wadsworth and Brooks.

    Google Scholar 

  34. Kisi, O. (2015). Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology, 528, 312–320.

    Article  Google Scholar 

  35. Colbeck, I. (2008). Environmental chemistry of aerosol. New York: Wiley-Blackwell.

    Book  Google Scholar 

  36. Hewitt, C. N., & Jackson, A. V. (2009). Atmospheric science for environmental scientists. New York: Wiley-Blackwell.

    Google Scholar 

  37. Schnelle, K. B., Dunn, R. F., & Ternes, M. E. (2015). Air pollution control technology handbook. Boca Raton: CRC.

    Google Scholar 

  38. Simon, D. (2013). Evolutionary optimization algorithms. New York: Wiley.

    Google Scholar 

  39. Yang, X.-S., Cui, Z., Xiao, R., Gandomi, A. H., & Karamanoglu, M. (2013). Swarm intelligence and bio-inspired computation: theory and applications. London: Elsevier.

    Book  Google Scholar 

  40. Monteiro, A., Lopes, M., Miranda, A. I., Borrego, C., & Vautard, R. (2005). Air pollution forecast in Portugal: a demand from the new air quality framework directive. International Journal of Environment and Pollution, 5, 1–9.

    Google Scholar 

  41. Friedlander, S. K. (2000). Smoke, dust and haze: fundamentals of aerosol dynamics. New York: Oxford University Press.

    Google Scholar 

  42. Vincent, J. H. (2007). Aerosol sampling: science, standards, instrumentation and applications. Chichester: Wiley.

    Book  Google Scholar 

  43. de Cos Juez, F. J., García Nieto, P. J., Martínez Torres, J., & Taboada Castro, J. (2010). Analysis of lead times of metallic components in the aerospace industry through a supported vector machine model. Mathematical and Computer Modelling, 52, 1177–1184.

    Article  Google Scholar 

  44. Shawe-Taylor, J., & Cristianini, N. (2004). Kernel methods for pattern analysis. New York: Cambridge University Press.

    Book  Google Scholar 

  45. Clerc, M. (2012). Standard particle swarm optimisation: from 2006 to 2011. Technical report. http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf. Accessed 23 Sept 2012.

  46. Solomatine, D. P., & Xue, Y. P. (2004). M5 model trees and neural networks: application to flood forecasting in the upper reach of the Hual River in China. Journal of Hydrologic Engineering, 9(6), 491–501.

    Article  Google Scholar 

  47. Rahimikhoob, A., Asadi, M., & Mashal, M. (2013). A comparison between conventional and M5 model tree methods for converting pan evaporation to reference evapotranspiration for semi-arid region. Water Resources Management, 27(14), 4815–4826.

    Article  Google Scholar 

  48. Pal, M., & Deswal, S. (2009). M5 model tree based modelling of reference evapotranspiration. Hydrological Processes, 23(10), 1437–1443.

    Article  Google Scholar 

  49. Pal, M. (2006). M5 model tree for land cover classification. International Journal of Remote Sensing, 27(4), 825–831.

    Article  Google Scholar 

  50. Wasserman, L. (2003). All of statistics: a concise course in statistical inference. New York: Springer.

    Google Scholar 

  51. Freedman, D., Pisani, R., & Purves, R. (2007). Statistics. New York: W.W. Norton & Company.

    Google Scholar 

  52. Picard, R., & Cook, D. (1984). Cross-validation of regression models. Journal of the American Statistical Association, 79(387), 575–583.

    Article  Google Scholar 

  53. Efron, B., & Tibshirani, R. (1997). Improvements on cross-validation: the .632 + bootstrap method. Journal of the American Statistical Association, 92(438), 548–560.

    Google Scholar 

  54. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2, 1–27.

    Article  Google Scholar 

  55. Zambrano-Bigiarini, M., & Rojas, R. (2013). A model-independent particle swarm optimisation software for model calibration. Environmental Modelling & Software, 43, 5–25.

    Article  Google Scholar 

  56. Zambrano-Bigiarini, M., & Rojas, R. (2014). HydroPSO: a flexible and model-independent particle swarm optimisation (PSO) package for calibration/optimisation of environmental models. In R package, version 0.3–4. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the computational support provided by the Department of Mathematics at University of Oviedo. Additionally, we would like to thank Anthony Ashworth for his revision of the English grammar and spelling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. García Nieto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García Nieto, P.J., García-Gonzalo, E., Bernardo Sánchez, A. et al. Air Quality Modeling Using the PSO-SVM-Based Approach, MLP Neural Network, and M5 Model Tree in the Metropolitan Area of Oviedo (Northern Spain). Environ Model Assess 23, 229–247 (2018). https://doi.org/10.1007/s10666-017-9578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-017-9578-y

Keywords

Navigation