Skip to main content

Advertisement

Log in

Higher Pollution Episode Detection Using Image Classification Techniques

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Image classification techniques have been applied to detect higher pollution episodes in modelled air pollution data. These techniques are widely used in video processing to find patterns in videos. An attempt for the first time has been made to apply these techniques by considering air pollution as continuous video frames as the spatio-temporal changes in the pollution are linked to its previous state of the atmosphere. The applicability of these techniques has been tested over Northern Italy to detect ozone pollution episodes in year 2004 using model simulated concentrations. The methods tested in this paper are pixel, block-based, histogram, pertinent pixel and twin-comparison method. While these techniques have some kind of merits and demerits, a modified pertinent pixel comparison algorithm has been proposed to detect pollution episodes. The proposed method has been validated to detect PM10 episodes over Milan metropolitan area during 2 months in 2008 and is able to detect PM10 episodic events as well as non-events. This method provides a single binary index that can be applied by the air quality modellers and decision makers to determine the pollution episode over a given domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Carnevale, C., Finzi, G., Pisoni, E., Singh, V., & Volta, M. (2011). An integrated air quality forecast system for a metropolitan area. Journal of Environmental Monitoring, 13(12), 3437–47. doi:10.1039/C1EM10303B.

    Article  CAS  Google Scholar 

  2. Carnevale, C., Decanini, E., & Volta, M. (2008). Design and validation of a multiphase 3D model to simulate tropospheric pollution. Science of the Total Environment, 390(1), 166–76. doi:10.1016/j.scitotenv.2007.09.017.

    Article  CAS  Google Scholar 

  3. Ekin, A., Tekalp, A. M., & Mehrotra, R. (2003). Automatic soccer video analysis and summarization. IEEE Transactions on Image Processing, 12(7), 796–807. doi:10.1109/TIP.2003.812758.

    Article  Google Scholar 

  4. EU. (2014). “EU—air quality standards.” European Commission. http://ec.europa.eu/environment/air/quality/standards.htm.

  5. Ji, D., Wang, Y., Wang, L., Chen, L., Hu, B., Tang, G., Xin, J., et al. (2012). Analysis of heavy pollution episodes in selected cities of northern China. Atmospheric Environment, 50(April), 338–48. doi:10.1016/j.atmosenv.2011.11.053.

    Article  CAS  Google Scholar 

  6. Koprinska, I., & Carrato, S. (2001). Temporal video segmentation: a survey. Signal Processing: Image Communication, 16(5), 477–500. doi:10.1016/S0923-5965(00)00011-4.

    Google Scholar 

  7. Kukkonen, J., Mia P., Sokhi, R. S, Luhana, L., Kitwiroon, N., Fragkou, L., Rantamäki, M. et al. (2005). “Analysis and evaluation of selected local-scale PM10 air pollution episodes in four European cities: Helsinki, London, Milan and Oslo.” Atmospheric Environment 39 (15). Fourth international conference on urban air quality: measurement, modelling and management, 25–28 March 2003: 2759–73. doi:10.1016/j.atmosenv.2004.09.090.

  8. Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–70. doi:10.1080/01431160600746456.

    Article  Google Scholar 

  9. Nagasaka, A., and Tanaka, Y. (1992). “Automatic video indexing and full-video search for object appearances.” http://www.citeulike.org/group/18/article/93073.

  10. Rantamäki, M., Pohjola, M. A, Tisler, P., Bremer, P., Kukkonen, J., and Karppinen, A. (2005). “Evaluation of two versions of the HIRLAM numerical weather prediction model during an air pollution episode in Southern Finland.” Atmospheric Environment 39 (15). Fourth international conference on urban air quality: measurement, modelling and management, 25–28 March 2003: 2775–86. doi:10.1016/j.atmosenv.2004.12.050.

  11. Rohr, A. C., & Wyzga, R. E. (2012). Attributing health effects to individual particulate matter constituents. Atmospheric Environment, 62(December), 130–52. doi:10.1016/j.atmosenv.2012.07.036.

    Article  CAS  Google Scholar 

  12. Saide, P. E., Carmichael, G. R., Spak, S. N., Gallardo, L., Osses, A. E., Mena-Carrasco, M. A., & Pagowski, M. (2011). Forecasting urban PM10 and PM2.5 pollution episodes in very stable nocturnal conditions and complex terrain using WRF–Chem CO tracer model. Atmospheric Environment, 45(16), 2769–80. doi:10.1016/j.atmosenv.2011.02.001.

    Article  CAS  Google Scholar 

  13. San José, R., Stohl, A., Karatzas, K., Bohler, T., James, P., & Pérez, J. L. (2005). A modelling study of an extraordinary night time ozone episode over Madrid domain. Environmental Modelling & Software, 20(5), 587–93. doi:10.1016/j.envsoft.2004.03.009.

    Article  Google Scholar 

  14. Singh, V., Carnevale, C., Finzi, G., Pisoni, E., & Volta, M. (2011). A cokriging based approach to reconstruct air pollution maps, processing measurement station concentrations and deterministic model simulations. Environmental Modelling & Software, 26(6), 778–786. doi:10.1016/j.envsoft.2010.11.014.

  15. Stern, R., Builtjes, P., Schaap, M., Timmermans, R., Vautard, R., Hodzic, A., Memmesheimer, M., et al. (2008). A model inter-comparison study focussing on episodes with elevated PM10 concentrations. Atmospheric Environment, 42(19), 4567–88. doi:10.1016/j.atmosenv.2008.01.068.

    Article  CAS  Google Scholar 

  16. US EPA. (2012). “National Ambient Air Quality Standards (NAAQS) | Air and Radiation | US EPA.” http://www.epa.gov/air/criteria.html.

  17. Van Zelm, R., Huijbregts, M. A. J., den Hollander, H. A., van Jaarsveld, H. A., Sauter, F. J., Struijs, J., van Wijnen, H. J., & van de Meent, D. (2008). European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment. Atmospheric Environment, 42(3), 441–53. doi:10.1016/j.atmosenv.2007.09.072.

    Article  Google Scholar 

  18. Zhang, H. J., Kankanhalli, A., & Smoliar, S. W. (1993). Automatic partitioning of full-motion video. Multimedia Systems, 1(1), 10–28. doi:10.1007/BF01210504.

    Article  Google Scholar 

Download references

Acknowledgments

This research was done as a project during doctoral degree at the University of Brescia, Italy. Author acknowledges Claudio Carnevale, Giovanna Finzi, Nicola Adami and Sergio Benini for their support and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V. Higher Pollution Episode Detection Using Image Classification Techniques. Environ Model Assess 21, 591–601 (2016). https://doi.org/10.1007/s10666-015-9497-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-015-9497-8

Keywords

Navigation