Skip to main content

Advertisement

Log in

Spatial Prediction of Stream Temperatures Using Top-Kriging with an External Drift

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Top-kriging is a method for estimating stream flow and stream flow-related variables on a river network. Top-kriging treats these variables as emerging from a two-dimensional spatially continuous process in the landscape. The top-kriging weights are estimated by a family of variogram models (regularisations) for different catchment areas (kriging support), which accounts for the different scales and the nested nature of the catchments. This assures that kriging weights are distributed to both hydrologically connected and unconnected sites of the stream network according to the data situation: top-kriging gives most weight to close-by sites at the same river system, but when the next hydrologically connected site is far away, more weight is given to a close-by site at an adjacent river system. The distribution of weights is in contrast to ordinary kriging and stream distance-based kriging which does not account for both spatial proximity and network connectivity. We extend the top-kriging method by incorporating an external drift function to account for the deterministic patterns of the spatial variable. We test the method for a comprehensive Austrian stream temperature dataset. The drift is modelled by exponential regression with catchment altitude. Top-kriging is then applied to the regression residuals. The variogram used in top-kriging is fitted by a semiautomatic optimisation procedure. A leave-one-out cross-validation analysis shows that the model performs well for the study domain. The residual mean squared error (cross-validation) decreases by 20 % when using top-kriging in addition to the regression model. For regions where the observed stream temperatures deviate from the expected value of the drift model, top-kriging corrects these regional biases. By exploiting the topological information of the stream network, top-kriging is able to improve the local adjustment of the drift model for the main streams and the tributaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Benyahya, L., Caissie, D., St-Hilaire, A., Ouarda, T. B. M. J., & Bobee, B. (2007). A review of statistical water temperature models. Canadian Water Resources Journal, 31, 179–192.

    Article  Google Scholar 

  2. Blöschl, G., & Sivapalan, M. (1995). Scale issues in hydrological modelling—a review. Hydrological Processes, 9, 251–290.

    Article  Google Scholar 

  3. Caissie, D. (2006). The thermal regime of rivers: a review. Freshwater Biology, 51(8), 1389–1406.

    Article  Google Scholar 

  4. Cressie, N. (1985). Fitting variogram models by weighted least squares. Mathematical Geology, 17, 563–586.

    Article  Google Scholar 

  5. Cressie, N. (1991). Statistics for spatial data. New York, NY: Wiley.

    Google Scholar 

  6. Cressie, N., Frey, J., Harch, B., & Smith, M. (2006). Spatial prediction on a river network. Journal of Agricultural, Biological, and Environmental Statistics, 11, 127–150.

    Article  Google Scholar 

  7. de Marsily, G. (1986). Quantitative hydrogeology. London: Academic.

    Google Scholar 

  8. Gardner, B., Sullivan, P. J., & Lembo, A. J., Jr. (2003). Predicting stream temperatures: geostatistical model comparison using alternative distance metrics. Canadian Journal of Fisheries and Aquatic Sciences, 60, 344–351.

    Article  Google Scholar 

  9. Garreta, V., Monestiez, P., & Ver Hoef, J. M. (2010). Spatial modelling and prediction on river networks: up model, down model or hybrid? Environmetrics, 21, 439–456. doi:10.1002/env.995.

    Google Scholar 

  10. Godina, R., Nobilis, F., Webb, B.W. (2005). Wassertemperaturen [Water temperature]. Karte 5.6. In Bundesministerium für Land-und Forstwirtschaft, Umwelt und Wasserwirtschaft (Ed.), Hydrological Atlas Austria. Österreichischer Kunst-und Kulturverlag Wien. ISBN 3-85437-250-7.

  11. Gottschalk, L. (1993). Correlation and covariance of runoff. Stochastic Hydrology and Hydraulics, 7, 85–101.

    Article  Google Scholar 

  12. Gottschalk, L. (1993). Interpolation of runoff applying objective methods. Stochastic Hydrology and Hydraulics, 7, 269–281.

    Article  Google Scholar 

  13. Gottschalk, L., Krasovskaia, I., Leblois, E., & Sauquet, E. (2006). Mapping mean and variance of runoff in a river basin. Hydrology and Earth System Sciences, 10, 469–484.

    Article  Google Scholar 

  14. Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97, 632–648.

    Article  Google Scholar 

  15. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. New York, NY: Oxford University Press.

    Google Scholar 

  16. Kyriakidis, P. C. (2004). A geostatistical framework for area-to-point spatial interpolation. Geographical Analysis, 36, 259–289.

    Google Scholar 

  17. Laaha, G., & Blöschl, G. (2006). Seasonality indices for regionalizing low flows. Hydrological Processes, 20, 3851–3878.

    Article  Google Scholar 

  18. Laaha, G., & Blöschl, G. (2006). A comparison of low flow regionalisation methods—catchment grouping. Journal of Hydrology, 323(1/4), 193–214.

    Article  Google Scholar 

  19. Laaha, G., & Blöschl, G. (2007). A national low flow estimation procedure for Austria. Hydrological Sciences Journal, 52(4), 625–644.

    Article  Google Scholar 

  20. Laaha, G., Skøien, J., Blöschl, G. (2013). Spatial prediction on river networks: comparison of top-kriging with regional regression. Hydrological Processes. doi:10.1002/hyp.9578.

  21. Matheron, G. (1965). Les variables regionalisées et leur estimation. Paris, France: Masson.

    Google Scholar 

  22. Mockus, A. (1998). Estimating dependencies from spatial averages. Journal of Computational and Graphical Statistics, 7, 501–513.

    Google Scholar 

  23. Peterson, E. E., Theobald, D. M., & Ver Hoef, J. M. (2007). Geostatistical modelling on stream networks: developing valid covariance matrices based on hydrologic distance and stream flow. Freshwater Biology, 52, 267–279.

    Article  Google Scholar 

  24. Peterson, E. E., & Ver Hoef, J. M. (2010). A mixed-model moving-average approach to geostatistical modelling in stream networks. Ecology, 91(3), 644–651.

    Article  Google Scholar 

  25. Sauquet, E., Gottschalk, L., & Leblois, E. (2000). Mapping average annual runoff: a hierarchical approach applying a stochastic interpolation scheme. Hydrological Sciences Journal, 45, 799–815.

    Article  Google Scholar 

  26. Skøien, J. O., & Blöschl, G. (2006). Sampling scale effects in random fields and implications for environmental monitoring. Environmental Monitoring and Assessment, 114(1–3), 521–552.

    Article  Google Scholar 

  27. Skøien, J. O., Blöschl, G., & Western, A. W. (2003). Characteristic space–time scales in hydrology. Water Resources Research, 39, 1304–1323.

    Article  Google Scholar 

  28. Skøien, J. O., Merz, R., & Blöschl, G. (2006). Top-kriging—geostatistics on stream networks. Hydrology and Earth System Sciences, 10, 277–287.

    Article  Google Scholar 

  29. Ver Hoef, J. M., Peterson, E., & Theobald, D. (2006). Spatial statistical models that use flow and stream distance. Environmental and Ecological Statistics, 13, 449–464.

    Article  Google Scholar 

  30. Wackernagel, H. (1995). Multivariate geostatistics. Berlin: Springer.

    Book  Google Scholar 

  31. Webb, B. W., Hannah, D. M., Moore, R. D., Brown, L. E., & Nobilis, F. (2008). Recent advances in stream and river temperature research. Hydrological Processes, 22(7), 902–918.

    Article  Google Scholar 

  32. Wehrly, K. E., Brenden, T. O., & Wang, L. (2009). A comparison of statistical approaches for predicting stream temperatures across heterogeneous landscapes. Journal of the American Water Resources Association, 45(4), 986–997.

    Article  Google Scholar 

Download references

Acknowledgments

Top-kriging was performed using the original FORTRAN code of [26] and the R package “Rtop” which can be freely downloaded from R-Forge platform at http://R-Forge.R-project.org. The authors would like to thank the Austrian Science Foundation (FWF, project no. P18993-N10), the Austrian Academy of Sciences “Hydrological Predictability” Project and the Austrian Climate Research Program “CILFAD” Project for financial support. Many thanks to Franz Suppan (Institute of Surveying, Remote Sensing and Land Information, University BOKU Vienna) for providing specific GIS functionality for catchment aggregation and to two anonymous reviewers for their valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Laaha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laaha, G., Skøien, J.O., Nobilis, F. et al. Spatial Prediction of Stream Temperatures Using Top-Kriging with an External Drift. Environ Model Assess 18, 671–683 (2013). https://doi.org/10.1007/s10666-013-9373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-013-9373-3

Keywords

Navigation