Skip to main content

Advertisement

Log in

Water Conservation Versus Soil Salinity Control

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper tackles the increasingly significant problem of irrigation-induced soil salinity within a groundwater management model. Irrigation can result not only in heavier salt concentrations but also in the removal of salt from the soil through return flows. Given these contradictory observations, we are interested in the effects on soil salt concentration if irrigation efficiency is improved. We develop a model of salt concentration patterns in both soil and groundwater. We introduce a negative externality to the production process by assuming that soil degradation due to higher soil salinity affects total factor productivity. Within this framework, we show that in the presence of this externality, increasing irrigation efficiency can lead to higher or lower soil salt concentration, depending on the social cost of transferring salt from one reservoir to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Private management of a common pool aquifer entails several inefficiencies, but the literature widely focuses on the following: (1) the stock externality arises from the fact that water extraction by one individual reduces the stock and, in turn, increases the costs of pumping for all and (2) the strategic externality arises from competition among farmers to appropriate groundwater since property rights are not well defined (stock externality and strategic behavior result from private exploitation of a common pool resource).

  2. This means that soil becomes saturated with water. Especially, irrigation water may raise the water table of shallow aquifers from beneath.

  3. Changing this assumption does not lead to significant changes in our results, but makes a more confusing discussion and leads to distinguish different cases.

  4. Brown [5] reports that some farmers in Beijing are now pumping from a depth of 300 m and “pumping water from this far down translates into exorbitant costs and reduced profit margins.”

  5. For a view of the type of cost functions that we introduce here, one can refer to \(c( S) =\frac {(\overline {S}-S)^{2}}{S}.\) This function satisfies assumption 2 \(\forall S\leq \overline {S}\).

  6. As with the assumption on the marginal effect of salt concentration, avoiding these assumptions does not lead to significant changes in our results while adding unnecessary complications to the related discussion.

  7. Using Eq. (2), we easily observe that \(\frac {\partial C_{t}^{S}}{\partial S_{t}}=\frac {\partial C_{t}^{S}}{\partial C_{t}^{\theta } }\cdot \frac {C_{t}^{S}}{\theta }\). But, we can also use Eq. (2) to derive \(\frac {\partial C_{t}^{\theta }}{\partial S_{t}}\) which is equal to \(-\frac {C_{t}^{S}}{\theta }\).

References

  1. Abrol, I.P., Yadav, J.S.P., Massoud, F.I. (1988). Salt-affected soils and their management. FAO soils bulletin (Vol. 39, p. 131). Rome: FAO.

    Google Scholar 

  2. Ahmad, M.U.D., Turral, H., Masih, I., Giordano, M., Massod, Z. (2007). Water saving technologies: myths and realities revealed in Pakistan’s rice-wheat systems. IWMI Research Report 108, International Water Management Institute.

  3. Barro, R.J. (1990). Government spending in a simple model of endogenous growth. Journal of Political Economy, 98(5), S103–S125.

    Article  Google Scholar 

  4. Brandyk, T., & Romanowicz, R. (1989). Some aspects of soil moisture control for soils with shallow groundwater levels. Agricultural Water Management, 16(1–2), 75–85.

    Article  Google Scholar 

  5. Brown, L.R. (2006). Emerging water shortages: falling water tables. In Plan b 2.0: rescuing a planet under stress and a civilization in trouble. New York: Norton. p. 285.

    Google Scholar 

  6. Burness, H.S., & Brill, T.C. (2001). The role for policy in common pool groundwater use. Resource and Energy Economics, 23, 19–40.

    Article  Google Scholar 

  7. Caswell, M.F., & Zilberman, D. (1986). The effects of well depth and land quality on the choice of irrigation technology. American Journal of Agricultural Economics, 68(4), 798–811.

    Article  Google Scholar 

  8. Chakravorty, U., & Umetsu, C. (2003). Basinwide water management: a spatial model. Journal of Environmental Economics and Management, 45(1), 1–23.

    Article  Google Scholar 

  9. CISEAU. (2006). Extend of salinization and strategies for salt-affected land prevention and rehabilitation. Background Paper. In Electronic conference on salinization organized and coordinated by IPTRID.

  10. Dockner, E. (1985). Local stability analysis in optimal control problems with two state variables. In G. Feichtinger (Ed.), Optimal control theory and economic analysis (Vol. 2). Amsterdam: North Holland.

    Google Scholar 

  11. FAO. (1985). Guidelines: land evaluation for irrigated agriculture. FAO soils bulletin (Vol. 55). Rome: FAO. p. 290.

    Google Scholar 

  12. Gisser, M., & Sanchez, D. (1980). Competition versus optimal control in groundwater pumping. Water Resources Research, 16, 638–642.

    Article  Google Scholar 

  13. Gollop, F.M., & Swinand, G.P. (1998). From total factor to total resource productivity: an application to agriculture. American Journal of Agricultural Economics, 80, 577–583.

    Article  Google Scholar 

  14. Hellegers, P., Zilberman, D., Van Ierland, E. (2001). Dynamics of agricultural groundwater extraction. Ecological Economics, 37(2), 303–311.

    Article  Google Scholar 

  15. Hoffman, G.J. (1986). Guidelines for reclamation of salt-affected soils. Applied Agricultural Resources, 1(2), 65–72.

    CAS  Google Scholar 

  16. Huffaker, R., & Whittlesey, N. (2003). A theoretical analysis of economics incentive policies encouraging agricultural water conservation. Water Resources Development, 19(1), 37–55.

    Article  Google Scholar 

  17. Israelsen, O.W., Criddle, W.D., Furiman, D.K., Hansen, V.E. (1944). Water application efficiencies in irrigation. Utah State Agricultural College Experiment Station Bulletin, 311. 55.

    Google Scholar 

  18. Jensen, M.E. (1967). Evaluating irrigation efficiency. Journal of the Irrigation and Drainage Division, American Society of Civil Engineers, 93(IR1), 83–98.

    Google Scholar 

  19. Johnson, N., Revenga, C., Echeverria, J. (2001). Managing water for people and nature. Science, 292, 1071–1072.

    Article  CAS  Google Scholar 

  20. Keller, A.A., & Keller, J. (1995). Effective efficiency: a water use efficiency concept for allocating freshwater resources. Discussion Paper 22, Center for Economic Policy Studies, Winrock International.

  21. Koundouri, P. (2004). Current issues in the economics of groundwater resource management. Journal of Economic Survey, 18(5), 703–740.

    Article  Google Scholar 

  22. Larson, D., Helfand, G., House, B. (1996). Second-best tax policies to reduce nonpoint source pollution. American Journal of Agricultural Economics, 78, 1108–1117.

    Article  Google Scholar 

  23. Legras, S., & Lifran, R. (2006). Dynamic taxation schemes to manage irrigation-induced salinity. Environmental Modeling and Assessment, 11, 157-167.

    Article  Google Scholar 

  24. Lichtenberg, E. (1989). Land quality, irrigation development, and cropping patterns in the northern high plains. American Journal of Agricultural Economics, 71(1), 187–794.

    Article  Google Scholar 

  25. Maas, E.V., & Hoffman, G.J. (1977). Crop salt tolerance—current assessment. Journal or Irrigation and Drainage, ASCE, 103(IR2), 115–134.

    Google Scholar 

  26. Melfou, K., & Papanagiotou, E. (2003). Total factor productivity adjusted for a detrimental input. Agricultural Economics Review, 4(2), 5–18.

    Google Scholar 

  27. Moreaux, M., & Reynaud, A. (2006). Urban freshwater needs and spatial cost externalities for coastal aquifers: a theoretical approach. Regional Science and Urban Economics, 36, 163–186.

    Article  Google Scholar 

  28. Pfeiffer, L., & Lin, C.Y.C. (2010). Does efficient irrigation technology lead to reduced groundwater extraction? Empirical evidence. Agricultural and Applied Economics Association, Annual Meeting, July 2010, Denver (USA).

  29. Provencher, B. (1993). A private property rights regime to replenish a groundwater aquifer. Land Economics, 69(4), 325–341.

    Article  Google Scholar 

  30. Provencher, B., & Burt, O. (1993). The externalities associated with the common property exploitation of groundwater. Journal of Environmental Economics and Management, 24, 139–158.

    Article  Google Scholar 

  31. Roseta-Palma, C. (2002). Groundwater management when water quality is endogenous. Journal of Environmental Economics and Management, 44(1), 93–105.

    Article  Google Scholar 

  32. Roseta-Palma, C. (2003). Joint quantity/quality management of groundwater. Environmental and Resources Economics, 26(1), 89–106.

    Article  Google Scholar 

  33. Rubio, S.J., & Casino, B. (2003). Strategic behavior and efficiency in the common property extraction of groundwater. Environmental and Resource Economics, 26(1), 73–87.

    Article  Google Scholar 

  34. Tzouvelekas, V., Vouvaki, D., Xepapadeas, A. (2006). Total factor productivity growth and the environment: a case for green growth accounting. WP 0617, University of Crete, Department of Economics.

  35. Umali, D. (1993). Irrigation-induced salinity: a growing problem for development and the environment. World Bank Technical Papers 215, p. 94.

  36. Vickner, S., Hoag, D., Frasier, W.M., Ascough, J. (1998). A dynamic economic analysis of nitrate leaching in corn production under nonuniform irrigation conditions. American Journal Agricultural Economics, 80, 397–408.

    Article  Google Scholar 

  37. Ward, F.A., & Pulido-Velazquez, M. (2008). Water conservation in irrigation can increase water use. Proceedings of the National Academy of Sciences, 105(47), 18215–18220.

    Article  CAS  Google Scholar 

  38. Wichelns, D. (1999). An economic model of waterlogging and salinization in arid regions. Ecological Economics, 30, 475–491.

    Article  Google Scholar 

  39. Xepapadeas, A. (1996). Quantity and quality management of groundwater: an application to irrigated agriculture in Iraklion, Crete. Environmental Modeling and Assessment, 1, 25–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alain Ayong Le Kama or Agnes Tomini.

Appendices

Appendix 1: Proof of proposition 1

By construction, the steady state \(\{w^{\ast };S^{\ast };C^{\theta \ast };\mu ^{\ast }\}\) satisfies:

$$ \left\{ \begin{array}{l} w^{\ast }=\frac{R}{e} \\ C^{\theta ^{\ast }}(S^{\ast })=C^{S^{\ast }}(S^{\ast })=\frac{M}{ S^{\ast}+\theta } \\ \mu ^{\ast }(S^{\ast })=-\frac{A^{\prime }\left( \frac{M}{S^{\ast }+\theta } \right) F(R)eS^{\ast }\theta }{\rho eS^{\ast }\theta +R(S^{\ast }+\theta )}\\ \phi (S^{\ast })=\rho \left[ A\left( \frac{M}{S^{\ast }+\theta }\right)\cdot F^{\prime }(R)-\frac{c(S^{\ast })}{e}\right] +c^{\prime }(S^{\ast })\frac{R}{ e}\notag\\ {\kern35pt}+\frac{A^{\prime }\left( \frac{M}{S^{\ast }+\theta }\right) \cdot F(R)\cdot M}{Z(S^{\ast })\cdot (S^{\ast }+\theta )}\left[ \rho S^{\ast }e+R\right] =0. \end{array} \right. $$

We only have to verify that \(\phi (S)=0\) admits at least one solution. First, given assumptions 1 and 2, we observe that

$$\begin{array}{@{}rcl@{}} \displaystyle\lim\limits_{S\rightarrow 0}\phi (S) &=&\rho \left( A\left( \frac{M}{ \theta }\right) F^{\prime }(R)-\frac{1}{e}\displaystyle\lim\limits_{S\rightarrow0}c(S)\right) +\frac{R}{e}\displaystyle\lim\limits_{S\rightarrow 0}\notag\\ &&c^{\prime }(S)+\frac{A^{\prime }\left( \frac{M}{\theta }\right) \cdot F(R)\cdot M}{\theta ^{2}}=-\infty \notag\\ \phi (\overline{S}) &\,=\,&\rho A( \overline{M}) {} \cdot {} F^{\prime }(R)\,+\, \frac{A^{\prime }( \overline{M}) {} \cdot {} F(R) {} \cdot {} \overline{M}}{Z(\overline{S})}( \rho \overline{S}e\,+\,R)\notag \end{array} $$

with \(\overline {M}=\frac {M}{\overline {S}+\theta }\) defined above.

We can also show that the function \(\phi (\cdot )\) is monotonic under assumptions 1 and 2:

$$\begin{array}{@{}rcl@{}} \phi ^{\prime }(S)&=&\rho \left[ -\frac{M}{(S+\theta )^{2}}A^{\prime }\left( \frac{M}{S+\theta }\right) \cdot F^{\prime }(R)-\frac{c^{\prime }(S)}{e} \right]\notag\\ &&+c^{\prime \prime }(S)\frac{R}{e} \notag\\ &+&\frac{u\cdot[ \rho S^{\ast }e+R] -\frac{A^{\prime }\left( \frac{M}{S^{\ast }+\theta }\right) \cdot F(R)\cdot M}{Z\cdot (S^{\ast }+\theta )}\rho e}{[ \rho S^{\ast }e+R] ^{2}}>0\notag \end{array} $$

with \(u{}={}\frac {-\frac {M}{(S+\theta )^{2}}\cdot A^{\prime \prime }\left ({}\frac {M}{S+\theta }{}\right ) \cdot F^{\prime }(R)\cdot Z(S)\cdot (S+\theta )-A^{\prime }\left ({}\frac {M}{S+\theta }{}\right ) \cdot F^{\prime }(R)\cdot M\cdot \lbrack Z(S)+(\rho e\theta +R)(S+\theta )]}{Z^{2}(S+\theta )^{2}}{}>{}0\), given we assume that \(A^{\prime \prime }(\cdot ) \leq 0\). We therefore obtain that the function \(\phi (\cdot )\) monotonically increases from \(-\infty \) to \(\phi (\overline {S})\) for values of S between 0 and \(\overline {S}\). Thus, a sufficient condition for the existence of a unique steady state is that \(\phi (\overline {S})\) is positive.

If we remind that the elasticities \(\varepsilon _{F/R}= \frac {R\cdot F^{\prime }(R)}{F(R)}>0\) and \(\varepsilon _{F/\overline {M}}=\frac { \overline {M}\cdot A^{\prime }(\overline {M})}{A(\overline {M})}>0\), then the function \(\phi (\overline {S})\) is positive if

$$\begin{array}{@{}rcl@{}} &&\rho \cdot \frac{A( {\normalsize \overline{M}}) }{A^{\prime }( {\normalsize \overline{M}}) \cdot {\normalsize \overline{M}}} \cdot \frac{F^{\prime }(R)\cdot R}{F(R)}>\frac{R\cdot \left( \rho \overline{S }e+R\right) }{Z(\overline{S})}\notag \\ &&\frac{\varepsilon _{F/R}}{\varepsilon _{A/\overline{M}}}>\frac{R\left( \rho \overline{S}e+R\right) }{\rho \cdot Z(\overline{S})}.\notag \end{array} $$

This concludes the proof.

Appendix 2: Proof of proposition 2

As usual, focusing on the local stability of the dynamic system, we can derive the following Jacobian matrix:

$$\begin{array}{@{}rcl@{}} J=\left( \begin{array}{llll} \frac{\partial \dot{w}}{\partial w} & \frac{\partial \dot{w}}{\partial C^{\theta }} & \frac{\partial \dot{w}}{\partial S} & \frac{\partial \dot{w}}{ \partial \mu } \\ \frac{\partial \dot{C^{\theta }}}{\partial w} & \frac{\partial \dot{ C^{\theta }}}{\partial C^{\theta }} & \frac{\partial \dot{C^{\theta }}}{ \partial S} & \frac{\partial \dot{C^{\theta }}}{\partial \mu } \\ \frac{\partial \dot{S}}{\partial w} & \frac{\partial \dot{S}}{\partial C^{\theta }} & \frac{\partial \dot{S}}{\partial S} & \frac{\partial \dot{S}}{ \partial \mu } \\ \frac{\partial \dot{\mu}}{\partial w} & \frac{\partial \dot{\mu}}{\partial C^{\theta }} & \frac{\partial \dot{\mu}}{\partial S} & \frac{\partial \dot{ \mu}}{\partial \mu } \end{array}\right) _{(w^{\ast },C^{\theta ^{\ast }},S^{\ast },\mu ^{\ast })}\notag\\ = \left( \begin{array}{llll} \frac{\partial \dot{w}}{\partial w} & \frac{\partial \dot{w}}{\partial C^{\theta }} & \frac{\partial \dot{w}}{\partial S} & \frac{\partial \dot{w}}{ \partial \mu } \\ \frac{\partial \dot{C^{\theta }}}{\partial w} & \frac{\partial \dot{ C^{\theta }}}{\partial C^{\theta }} & \frac{\partial \dot{C^{\theta }}}{ \partial S} & 0 \\ -e & 0 & 0 & 0 \\ \frac{\partial \dot{\mu}}{\partial w} & \frac{\partial \dot{\mu}}{\partial C^{\theta }} & \frac{\partial \dot{\mu}}{\partial S} & \frac{\partial \dot{ \mu}}{\partial \mu } \end{array} \right) _{(w^{\ast },C^{\theta ^{\ast }},S^{\ast },\mu ^{\ast })}\notag \end{array} $$

To find the properties of this matrix, we shall apply a method developed by Dockner [10] to investigate in a simple way the stability properties of a linearized four-dimensional dynamic system. Using this method, the eigenvalues of the system can easily be computed according to the following simple formula:

$$p_{1,2,3,4}=\frac{\rho }{2}\pm \sqrt{\left( \frac{\rho }{2}\right) ^{2}- \frac{\Omega }{2}\pm \frac{1}{2}\sqrt{\Omega ^{2}-4detJ}} $$

with

$$\begin{array}{rll}\Omega &=&\left|\begin{array}{ll}\frac{\partial \dot{w}}{\partial w} & \frac{\partial \dot{w}}{\partial S} \\[2pt]\frac{\partial \dot{S}}{\partial w} & \frac{\partial \dot{S}}{\partial S}\end{array}\right| +\left|\begin{array}{ll}\frac{\partial \dot{C^{\theta }}}{\partial C^{\theta }} & \frac{\partial\dot{C^{\theta }}}{\partial \mu } \\[2pt]\frac{\partial \dot{\mu}}{\partial C^{\theta }} & \frac{\partial \dot{\mu}}{\partial \mu }\end{array}\right| +2\left|\begin{array}{ll}\frac{\partial \dot{w}}{\partial C^{\theta }} & \frac{\partial \dot{w}}{\partial \mu } \\[2pt]\frac{\partial \dot{S}}{\partial C^{\theta }} & \frac{\partial \dot{S}}{\partial \mu }\end{array}\right|\\[12pt] &=& \left|\begin{array}{ll}\frac{\partial \dot{w}}{\partial w} & \frac{\partial \dot{w}}{\partial S} \\[2pt]-e & 0\end{array}\right| +\left|\begin{array}{ll}\frac{\partial \dot{C^{\theta }}}{\partial C^{\theta }} & 0 \\[2pt]\frac{\partial \dot{\mu}}{\partial C^{\theta }} & \frac{\partial \dot{\mu}}{\partial \mu }\end{array}\right| +2\left|\begin{array}{ll}\frac{\partial \dot{w}}{\partial C^{\theta }} & \frac{\partial \dot{w}}{\partial \mu } \\[2pt]0 & 0\end{array}\right|.\end{array} $$

According to this method, the equilibrium of the system is saddle path if \(\det (J)>0\) and \(\Omega <0\).

Let use compute the required derivative.

$$\begin{array}{@{}rcl@{}} \frac{\partial \dot{w}}{\partial C^{\theta }} &=&\frac{1}{eA(\cdot )F^{\prime \prime }(\cdot )} \left\{ \frac{R(\theta +S^{\ast })}{e\theta S^{\ast }}\left[A^{\prime}(\cdot )F^{\prime}(\cdot)-\frac{\mu^{\ast}}{e\theta }\left(\frac{\theta}{S^{\ast }}+1-e\right)\right]+\rho A^{\prime}(\cdot )F^{\prime}(\cdot)\right.\notag \\ &&\left.+ \frac{\mu^{\ast}}{e}\left[\frac{\rho}{\theta}\left(\frac{\theta}{ S^{\ast }}+1-e\right)+\frac{R}{(S^{\ast})^{2}}\right]+A^{\prime\prime}(\cdot )F(\cdot)\frac{C^{\theta^{\ast } }}{\theta}\right\} \notag\\ &=&\frac{1}{eA(\cdot )F^{\prime \prime }(\cdot )} \left\{A^{\prime}(\cdot )F^{\prime}\cdot\frac{Z(S^{\ast})}{e\theta S^{\ast}}+A^{\prime\prime}(\cdot )F(\cdot)\frac{C^{\theta^{\ast } }}{\theta}+A^{\prime}(\cdot )F(\cdot)\cdot \frac{R(\theta +S^{\ast })}{e^{2}\theta^{2} S^{\ast }}\cdot \left(\frac{ \theta}{S^{\ast }}+1-e\right)\right.\notag \\ &&\left.-A^{\prime}(\cdot )F(\cdot)\cdot\frac{\theta S^{\ast}}{Z(S^{\ast})} \left[\frac{\rho}{\theta}\left(\frac{\theta}{S^{\ast }}+1-e\right)+\frac{R}{ (S^{\ast})^{2}}\right] \right\}\lessgtr 0 \notag\\ \frac{\partial \dot{w}}{\partial S} &=&\frac{1}{eA(\cdot )F^{\prime \prime }(\cdot )} \left\{ - \frac{R\cdot M}{eS^{\ast }\theta(\theta +S^{\ast })} \left[A^{\prime}(\cdot )F^{ \prime}(\cdot)-\frac{\mu^{\ast}}{e\theta}\left( \frac{\theta}{S^{\ast}}+1-e\right)\right] \right. \notag\\ &&\left.+ \frac{\rho}{e}\left(-c^{\prime}(S^{\ast})+\frac{ \mu^{\ast}C^{\theta^{\ast}}}{\theta S^{\ast }}\right) +c^{\prime\prime}(S^{\ast})\frac{R}{e}+ \frac{\mu^{\ast}C^{\theta^{\ast}}R}{ e\theta (S^{\ast })^{2}}\right\}<0 \notag\\ \frac{\partial \dot{w}}{\partial \mu} &=&\frac{C^{\theta^{\ast } }R}{ e^{2}\theta^{2}A(\cdot )F^{\prime \prime}(\cdot)}<0 \notag\\ \frac{\partial \dot{C}^{\theta }}{\partial C^{\theta }} &=&-\frac{R(\theta +S^{\ast })}{e\theta S^{\ast }} <0\:\:;\:\: \frac{\partial \dot{C}^{\theta } }{\partial S}= -\frac{R\cdot C^{\theta^{\ast }}}{eS^{\ast }\theta}<0 \notag\\ \frac{\partial \dot{\mu}}{\partial C^{\theta }}&=& A^{\prime \prime }(\cdot )F(\cdot )<0\:\:;\:\:\frac{\partial \dot{\mu}}{\partial S } = - \frac{ R\mu^{\ast }}{e(S^{\ast })^{2}}<0 \:\:;\:\: \frac{\partial \dot{\mu}}{ \partial \mu } =\rho +\frac{R}{e}\left( \frac{1}{S^{\ast }}+\frac{1}{\theta } \right)= \frac{Z(S^{\ast })}{e\theta S^{\ast }}>0.\notag\\ \end{array} $$

We calculate \(\det (J)\) as follows:

$$\begin{array}{@{}rcl@{}} \det(J) &=& -e \left[\frac{\partial \dot{w}}{\partial C^{\theta }} \cdot \frac{\partial \dot{C}^{\theta }}{\partial S}\cdot\frac{\partial \dot{\mu}}{ \partial \mu } -\frac{\partial \dot{w}}{\partial S}\cdot \frac{\partial \dot{ C}^{\theta }}{\partial C^{\theta }}\cdot\frac{\partial \dot{\mu}}{\partial \mu } +\frac{\partial \dot{w}}{\partial \mu} \left(\frac{\partial \dot{C} ^{\theta }}{\partial C^{\theta }}\cdot\frac{\partial \dot{\mu}}{\partial S }- \frac{\partial \dot{C}^{\theta }}{\partial S}\cdot\frac{\partial \dot{\mu}}{ \partial C^{\theta }}\right) \right] \notag\\ &=& -e \left[ \underbrace{\frac{\partial \dot{C}^{\theta }}{\partial S}} _{<0}\cdot\left( \underbrace{\frac{\partial \dot{w}}{\partial C^{\theta }}} _{?} \cdot \underbrace{\frac{\partial \dot{\mu}}{\partial \mu }}_{>0}- \underbrace{\frac{\partial \dot{w}}{\partial \mu}}_{<0} \cdot\underbrace{ \frac{\partial \dot{\mu}}{\partial C^{\theta }}}_{<0}\right) +\underbrace{ \frac{\partial \dot{w}}{\partial \mu}}_{<0}\cdot\underbrace{\frac{\partial \dot{C}^{\theta }}{\partial C^{\theta }}}_{<0}\cdot\underbrace{\frac{ \partial \dot{\mu}}{\partial S }}_{<0} -\underbrace{\frac{\partial \dot{w}}{ \partial S}}_{<0}\cdot \underbrace{\frac{\partial \dot{C}^{\theta }}{ \partial C^{\theta }}}_{<0}\cdot\underbrace{\frac{\partial \dot{\mu}}{ \partial \mu }}_{>0} \right].\notag \end{array} $$

Let us denote the term between the round brackets by \(D(S^{\ast })=\left . \left ( \frac {\partial \dot {w}}{\partial C^{\theta }}\cdot \frac {\partial \dot {\mu }}{\partial \mu }-\frac {\partial \dot {w}}{\partial \mu }\cdot \frac {\partial \dot {\mu }}{\partial C^{\theta }} \right ) \right \vert _{(w^{\ast },C^{\theta ^{\ast }},S^{\ast },\mu ^{\ast })}.\) Then, a sufficient condition for \(\det (J)\) to be positive is to have \(D(S^{\ast })\geq 0.\) Now, let us rewrite \(D(S^{\ast })\) as follows:

$$\begin{array}{@{}rcl@{}} D(S^{\ast }) &=&\frac{1}{e^{2}A(\cdot )F^{\prime \prime }(\cdot )}\Bigg\{ \frac{Z(S^{\ast })}{(e\theta S^{\ast })^{2}}\cdot \frac{A^{\prime }(\cdot )}{ \theta S^{\ast }}\left( F^{\prime }(\cdot )\cdot Z(S^{\ast })+F(\cdot )\cdot \frac{R(\theta +S^{\ast })}{e\theta }\cdot \left( \frac{\theta }{S^{\ast }} +1-e\right) \right)\notag \\ && -A^{\prime }(\cdot )F(\cdot )\left[ \frac{\rho }{\theta }\left( \frac{\theta }{S^{\ast }}+1-e\right) +\frac{R}{(S^{\ast })^{2}}\right] + \frac{A^{\prime \prime }(\cdot )F^{{}}(\cdot )\cdot C^{\theta ^{\ast }}}{ \theta }( \rho eS^{\ast }+RS^{\ast }) \Bigg\}.\notag \end{array} $$

One can first remark that if the TFP is assumed constant (i.e., \(A^{\prime }(\cdot )\rightarrow 0\)), then \(D(S^{\ast })=0\) and \(\det (J)>0.\) Now, in the more general case, with \(A^{\prime }(\cdot )<0\), we can compute the condition on the parameters to have a positive \(D(S^{\ast })\) as follows:

$$\begin{array}{@{}rcl@{}} D(S^{\ast }) &\geq &0 \\ &\Leftrightarrow &\frac{\rho }{\theta }\left( \frac{\theta }{S^{\ast }} +1-e\right) +\frac{R}{(S^{\ast })^{2}}>\frac{Z(S^{\ast })}{e^{2}(\theta S^{\ast })^{3}}\left( \frac{F^{\prime }(\cdot )}{F(\cdot )}\cdot Z(S^{\ast })+\frac{R(\theta +S^{\ast })}{e\theta }\cdot \left( \frac{\theta }{S^{\ast } }+1-e\right) \right) \\ &&+\frac{A^{\prime \prime }(\cdot )\cdot C^{\theta ^{\ast }}}{A^{\prime }(\cdot )\theta }( \rho eS^{\ast }+RS^{\ast }) \\ &\Leftrightarrow &\frac{\rho }{\theta }\left( \frac{\theta }{S^{\ast }} +1-e\right) +\frac{R}{(S^{\ast })^{2}}>\frac{Z(S^{\ast })}{e^{2}(\theta S^{\ast })^{3}}\left( \frac{\varepsilon _{F/R}}{R}\cdot Z(S^{\ast })+\frac{ R(\theta +S^{\ast })}{e\theta }\cdot \left( \frac{\theta }{S^{\ast }} +1-e\right) \right) \\ &&+\frac{\varepsilon _{A^{\prime }/M}}{\theta (S^{\ast }+\theta )}\left( \rho eS^{\ast }+RS^{\ast }\right) A \end{array} $$

with \(\varepsilon _{A^{\prime }/M}=\frac {MA^{\prime \prime }(\cdot )}{ A^{\prime }(\cdot )}>0\).

We therefore can deduce that \(\det J>0\) under this condition.

Besides, in a similar way, we find easily that

$$ \Omega =e\underset{<0}{\underbrace{\frac{\partial \dot{w}}{\partial S}}}+ \underset{<0}{\underbrace{\frac{\partial \dot{C}^{\theta }}{\partial C^{\theta }}}}\cdot \underset{>0}{\underbrace{\frac{\partial \dot{\mu}}{ \partial \mu }}}<0. $$

We therefore obtain that under condition (A), \(\det J>0\) and \( \Omega <0\), the sufficient condition for real eigenvalues to exist and thus for local monotonicity to hold are fulfilled. This concludes the proof.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Kama, A.A., Tomini, A. Water Conservation Versus Soil Salinity Control. Environ Model Assess 18, 647–660 (2013). https://doi.org/10.1007/s10666-013-9368-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-013-9368-0

Keywords

JEL Classifications

Navigation