Skip to main content
Log in

Ensemble Behaviour in Population Processes with Applications to Ecological Systems

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

We study Markovian models for population processes in continuous time, addressing questions concerning the behaviour of ensembles of individuals (equilibrium, quasi-equilibrium and time-dependent behaviour) and, in particular, what can be deduced from models for individual behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, W. J. (1991). Continuous-time Markov chains: An applications-oriented approach. New York: Springer.

    Google Scholar 

  2. Bartlett, M. S. (1956). Deterministic and stochastic models for recurrent epidemics. In Proceedings of the 3rd Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955 (Vol. IV, pp. 81–109). Berkeley, University of California Press.

  3. Brown, M. (1970). A property of Poisson processes and its application to macroscopic equilibrium of particle systems. The Annals of Mathematical Statistics, 41, 1935–1941.

    Article  Google Scholar 

  4. Darroch J. N., & Seneta, E. (1967). On quasi-stationary distributions in absorbing continuous-time finite Markov chains. Journal of Applied Probability, 4, 192–196.

    Article  Google Scholar 

  5. Derman, C. (1955). Some contributions to the theory of denumerable Markov chains. Transactions of the American Mathematical Society, 79, 541–555.

    Article  Google Scholar 

  6. Doob, J. L. (1953). Stochastic processes. New York: Wiley.

    Google Scholar 

  7. Gilpin, M. E., & Hanski, I. (1991). Metapopulation dynamics. New York: Academic.

    Google Scholar 

  8. Grimmett, G. R., & Stirzaker, D. R. (2001). Probability and random processes, (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  9. Gyllenberg, M., & Silvestrov, D. S. (1994). Quasi-stationary distributions of a stochastic metapopulation model. Journal of Mathematical Biology, 33, 35–70.

    Article  Google Scholar 

  10. Kelly, F. P. (1979). Reversibility and stochastic networks. Chichester: Wiley.

    Google Scholar 

  11. Kingman, J. F. C. (1963). The exponential decay of Markov transition probabilities. Proceedings of the London Mathematical Society, 13, 337–358.

    Article  Google Scholar 

  12. Kingman, J. F. C. (1969). Markov population processes. Journal of Applied Probability, 6, 1–18.

    Article  Google Scholar 

  13. Kurtz, T. G. (1970). Solutions of ordinary differential equations as limits of pure jump Markov processes. Journal of Applied Probability, 7, 49–58.

    Article  Google Scholar 

  14. Kurtz, T. G. (1971). Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. Journal of Applied Probability, 8, 344–356.

    Article  Google Scholar 

  15. Norris, J. R. (1997). Markov chains. Cambridge: Cambridge University Press.

    Google Scholar 

  16. Pollett, P. K. (1990). On a model for interference between searching insect parasites. Journal of the Australian Mathematic Society, Series B, 31, 133–150.

    Article  Google Scholar 

  17. Pollett, P. K. (1999). Modelling quasi-stationary behaviour in metapopulations. Mathematics and Computers in Simulation, 48, 393–405.

    Article  Google Scholar 

  18. Ross, J. V., Taimre, T., & Pollett, P. K. (2006). On parameter estimation in population models. Theoretical Population Biology, 70, 498–510.

    Article  CAS  Google Scholar 

  19. Serfozo, R. (1999). Introduction to stochastic networks. New York: Springer.

    Google Scholar 

  20. Steinsaltz, D., & Evans, S. N. (2004). Markov mortality models: Implications of quasistationarity and varying initial distributions. Theoretical Population Biology, 65, 319–337.

    Article  Google Scholar 

  21. Van Doorn, E. A., & Pollett, P. K. (2008). Survival in a quasi-death process. Linear Algebra and its Applications, 429, 776–791.

    Article  Google Scholar 

  22. Whittle, P. (1967). Nonlinear migration processes. Bulletin of the International Institute of Statistics, 42, 642–647.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip K. Pollett.

Additional information

Based on a paper presented at the 17th Biennial Congress on Modelling and Simulation, Christchurch, New Zealand, December 2007.

Appendix

Appendix

This section is necessarily technical. It contains proofs of our major results.

Proof of Theorem 1

The ensemble model is density dependent in the sense of Kurtz [13]: There is an open subset of \({\mathbb R}^S\), namely E = (0,1)S, and functions \(f:E\times {\mathbb Z}^S \to{\mathbb R}\) with the property that \(q(\boldsymbol{n},\boldsymbol{n}+\boldsymbol{l}) = n f\left(\boldsymbol{n}/n,\boldsymbol{l}\right)\), \(\boldsymbol{n},\boldsymbol{n}+\boldsymbol{l} \in {\mathbb Z}^S\). Clearly, \(f(\boldsymbol{x},\boldsymbol{e}_j-\boldsymbol{e}_i)= x_i q_{ij}\), j ≠ i. Our theorem is then proved by applying Theorem 3.1 of Kurtz’s paper. We first define \(F:E\to {\mathbb R}^S\) by \(F(\boldsymbol{x}) = \sum_{\boldsymbol{l}} \boldsymbol{l} f(\boldsymbol{x},\boldsymbol{l})\). This function is required to be Lipschitz continuous on E (clearly true because F has bounded first partial derivatives on E), thus guaranteeing a solution \(\boldsymbol{p}(t)\) to \(\boldsymbol{p}^{\,\prime}(t) = F(\boldsymbol{p}(t))\), \(\boldsymbol{p}(t)\in E\), 0 ≤ t ≤ u, satisfying \(\boldsymbol{p}(0)=\boldsymbol{a}\). Next, two technical conditions must be fulfilled: (1) \(\sup_{\boldsymbol{x}\in E} \sum_{\boldsymbol{l}\neq \boldsymbol{0}} |\boldsymbol{l}| f(\boldsymbol{x},\boldsymbol{l}) <\infty\) and (2) \(\lim_{d\to\infty } \sup_{\boldsymbol{x}\in E} \sum_{|\boldsymbol{l}|>d} |\boldsymbol{l}| f(\boldsymbol{x},\boldsymbol{l}) = 0\). They are trivially satisfied because S is a finite set.

Kurtz’s theorem states that \(\boldsymbol{X}^{{(n)}}_{\phantom{k}}(t)\) converges uniformly in probability over finite time intervals to \(\boldsymbol{p}(t)\) as n→ ∞, so it remains for us to show that \(F(\boldsymbol{x})=\boldsymbol{x} Q\). This is straightforward:

$$\begin{array}{rcl} F(\boldsymbol{x}) &=& \sum\limits_{i\in S} \sum\limits_{j\neq i} (\boldsymbol{e}_j-\boldsymbol{e}_i) f(\boldsymbol{x},\boldsymbol{e}_j-\boldsymbol{e}_i) \\ &=& \sum\limits_{i\in S} x_i \sum\limits_{j\neq i} (\boldsymbol{e}_j-\boldsymbol{e}_i) q_{ij} \\ &= & \sum\limits_{i\in S} x_i \left( \sum\limits_{j\neq i} q_{ij} \boldsymbol{e}_j - q_i \boldsymbol{e}_i \right) = \sum\limits_{k\in S} x_k \sum\limits_{i\in S} q_{ki} \boldsymbol{e}_i. \end{array}$$

Hence, \(F(\boldsymbol{x})=\boldsymbol{x} Q\), because (elementwise) \(F_i(\boldsymbol{x}) = \sum_{k\in S} x_k q_{ki}\) (i ∈ S).□

Proof of Theorem 2

In addition to \(f(\boldsymbol{x},\boldsymbol{e}_j-\boldsymbol{e}_i)= x_i q_{ij}\), j ≠ i, we have \(f(\boldsymbol{x},-\boldsymbol{e}_i)= x_i q_{i0}\) and \(f(\boldsymbol{x},\boldsymbol{e}_j)= v_{j}\) (asymptotically). The model is not strictly density dependent, but asymptotically density dependent in the sense of Pollett [16], and the present result follows from Theorem 3.1 of Pollett’s paper, which shows that \(\boldsymbol{X}^{{(\nu)}}_{\phantom{j}}(t)\) converges uniformly in probability over finite time intervals to \(\boldsymbol{r}(t)\) as ν→ ∞, the unique solution to \(\boldsymbol{r}^{\,\prime}(t) = F(\boldsymbol{r}(t))\), \(\boldsymbol{r}(t)\in E\), 0 ≤ t ≤ u. We may evaluate \(F(\boldsymbol{x})\) as follows:

$$\begin{array}{rcl} F(\boldsymbol{x}) &=&\sum\limits_{i\in C} \sum\limits_{j\in C,\,j\neq i} (\boldsymbol{e}_j-\boldsymbol{e}_i) f(\boldsymbol{x},\boldsymbol{e}_j-\boldsymbol{e}_i)\\ &&-\sum\limits_{i\in C} \boldsymbol{e}_i f(\boldsymbol{x},-\boldsymbol{e}_i) +\sum\limits_{j\in C} \boldsymbol{e}_j f(\boldsymbol{x},\boldsymbol{e}_j)\\ &=& \sum\limits_{i\in C} x_i \sum\limits_{j\in C,\,j\neq i} (\boldsymbol{e}_j-\boldsymbol{e}_i) q_{ij} -\sum\limits_{i\in C} x_i \boldsymbol{e}_i q_{i0} +\sum\limits_{j\in C} \boldsymbol{e}_j v_j\\ &=& \sum\limits_{i\in C} x_i \left( \sum\limits_{j\in C,\,j\neq i} q_{ij} \boldsymbol{e}_j - q_i \boldsymbol{e}_i \right) +\sum\limits_{j\in C} \boldsymbol{e}_j v_j\\ &=& \sum\limits_{k\in C} x_k \sum\limits_{i\in C} q_{ki} \boldsymbol{e}_i +\sum\limits_{i\in C} \boldsymbol{e}_i v_i, \end{array}$$

where recall that q i  = − q ii  = ∑  j ∈ S, j ≠ i q ij . Hence, \(F(\boldsymbol{x})=\boldsymbol{v} + \boldsymbol{x} {Q}_{_{^{\!C}}}\), because (elementwise) \(F_i(\boldsymbol{x}) = v_i+ \sum_{k\in C} x_k q_{ki}\) (i ∈ C).□

Proof of Theorem 3

Let Q k be the restriction to E k of transition rate matrix \({Q}_{_{^{\!E}}}\) of the ensemble process, and let − α k be the eigenvalue of Q k with maximum real part (k = 1,...,n). Then, α k  = k α. To see this, observe that \(\alpha_k = \lim_{t\to \infty} -(1/t) \log \Pr(T>t)\), where T is the time to first exit of the process from E k (see Kingman [11]); the limit does not depend on the initial distribution over states. However, T =  min {T 1,...,T k }, where T i is the time it takes individual i to reach 0, and, as the individuals move independently, \(\Pr(T>t)=\prod_{i=1}^k \Pr(T_i>t)\). As the individuals move according to Q, \(-(1/t) \log \Pr(T_i>t)\to \alpha\) as t→ ∞. Hence, α k  = k α. It follows immediately that − α is the eigenvalue of \({Q}_{_{^{\!E}}}\) with maximum real part, and, moreover, that its algebraic, and hence geometric, multiplicity is equal to 1. We may therefore appeal directly to Theorem 5 of Van Doorn and Pollett [21], which implies that the LCD of the ensemble process exists provided that the initial distribution assigns mass to at least one of E 1,...,E n (we assume that all n individuals are present initially, and so, all this mass is assigned to E n ). Furthermore, the LCD is the unique non-negative solution \({\boldsymbol{u}}_{_{^{\!E}}}=(u(\boldsymbol{m}), \boldsymbol{m}\in {C}_{_{^{\!E}}})\) to \({\boldsymbol{u}}_{_{^{\!E}}} {Q}_{_{^{\!E}}} = -\alpha{\boldsymbol{u}}_{_{^{\!E}}}\) with \({\boldsymbol{u}}_{_{^{\!E}}} {\bf 1}^{\!\top} =1\). Therefore, it remains to show that the given \({\boldsymbol{u}}_{_{^{\!E}}}\) satisfies these equations: \(u(\boldsymbol{m})=0\) unless \(\boldsymbol{m}\in E_1\), in which case \(u((n-1,\boldsymbol{e}_j))=\pi_j\) (j ∈ C), where \(\boldsymbol{\pi}=(\pi_j, j\in C)\) is the LCD of the individual process, that is, the unique (strictly positive) solution to \(\boldsymbol{\pi} Q = -\alpha\boldsymbol{\pi}\) with \(\boldsymbol{\pi} {\bf 1}^{\!\top} =1\). Writing out the latter, we get

$$ \sum\limits_{i\in C,\, i\neq j} \pi_i q_{ij} = (q_j -\alpha) \pi_j \qquad (j\in C), $$

where q j  = ∑  k ∈ S, k ≠ j q jk , while the former eigenvector equation may be written as

$$ \sum\limits_{\boldsymbol{m}\in E_n,\, \boldsymbol{m} \neq \boldsymbol{n}} u(\boldsymbol{m}) q(\boldsymbol{m},\boldsymbol{n}) = (q(\boldsymbol{n}) -\alpha) u(\boldsymbol{n}), \label{eq:pkp1} $$
(2)

\(\boldsymbol{n}\in E_n\), and, for k = 1,..., n − 1,

$$\begin{array}{rcl} \sum\limits_{\boldsymbol{m}\in E_{k+1}} &&u(\boldsymbol{m}) q(\boldsymbol{m},\boldsymbol{n}) + \sum\limits_{\boldsymbol{m}\in E_k,\, \boldsymbol{m} \neq \boldsymbol{n}} u(\boldsymbol{m}) q(\boldsymbol{m},\boldsymbol{n}) \\ &=& (q(\boldsymbol{n}) -\alpha) u(\boldsymbol{n}) \qquad (\boldsymbol{n}\in E_k). \end{array}$$
(3)

Clearly Eq. 2, and Eq. 3 for k = 2,...,n, are satisfied because \(u(\boldsymbol{m})=0\) when \(\boldsymbol{m}\in \cup_{k=2}^n E_k\), and the remaining equation (k = 1) will hold if and only if

$$\begin{array}{rcl} &&\sum\limits_{j\in C} \sum\limits_{i\in C,\, i\neq j} u(\boldsymbol{n}+\boldsymbol{e}_j-\boldsymbol{e}_i) (n_j+1) q_{ji} \\ &&\quad= \left(\, \sum\limits_{k\in C} n_k q_{k} -\alpha\right) u(\boldsymbol{n}) \qquad (\boldsymbol{n}\in E_1), \end{array}$$
(4)

remembering that the total rate out of state \(\boldsymbol{n} \in E_k\) is \(q(\boldsymbol{n}) = \sum_{i\in C} n_i q_{i}\). But, \(\boldsymbol{m}\in E_1\) if and only if \(\boldsymbol{m}= (n-1,\boldsymbol{e}_i)\) for some i ∈ C, and so we require

$$ \sum\limits_{i\in C,\,i\neq j} u((n-1,\boldsymbol{e}_i)) q_{ij} = \left( q_j -\alpha\right) u((n-1,\boldsymbol{e}_j)), $$

for j ∈ C. On substituting \(u((n-1,\boldsymbol{e}_i))=\pi_i\), we find that

$$ \sum\limits_{i\in C,\,i\neq j} \pi_j q_{ij} = \left( q_j -\alpha\right) \pi_j \qquad (j\in C), $$

which of course is the individual process eigenvector equation.□

Proof of Theorem 4

This is similar to the proof of Theorem 3, but now, we appeal to Theorem 3 of Van Doorn and Pollett [21] for important information about accessibility; the initial distribution must assign all mass to \(\cup_{k\geq {\kappa}_{_{^{\!E}}}} E_k\), where \({\kappa}_{_{^{\!E}}}\) is the smallest index k of those α k that share the smallest value among α 1,..., α n . However, α k  = , implying that \({\kappa}_{_{^{\!E}}}=1\), and so, the accessibility condition is satisfied automatically (we have assumed that the ensemble process starts in E n ). Evaluating the LCD as directed by Theorem 3 of Van Doorn and Pollett [21] amounts to calculating \({\boldsymbol{u}}_{_{^{\!E}}}\) as in the proof of our Theorem 3, but now the individual process is a simple death process. Therefore, α = q, and the unique (strictly positive) solution \(\boldsymbol{\pi}=(\pi_j, j\in C)\) to \(\boldsymbol{\pi} Q = -\alpha\boldsymbol{\pi}\) with \(\boldsymbol{\pi} {\bf 1}^{\!\top} =1\) is given in Theorem 7 of Van Doorn and Pollett [21], and written out in the statement of our theorem.□

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pollett, P.K. Ensemble Behaviour in Population Processes with Applications to Ecological Systems. Environ Model Assess 14, 545–553 (2009). https://doi.org/10.1007/s10666-008-9165-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-008-9165-3

Keywords

Navigation