Skip to main content
Log in

Prediction of Pollen-Mediated Gene Flow Between Fields of Red Clover (Trifolium pratense)

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Pollen-mediated gene flow between red clover fields by bumblebees is predicted by estimating or simulating the parameters in a gene flow model for insect-pollinated crops. Generally, the predicted level of gene flow was found to depend on the visiting bee species and the spatial arrangement of the red clover fields. When the fields are close to each other, the gene flow depends mainly on the typical foraging distance of the visiting bee species, but when the fields are far apart, the gene flow between red clover fields is more sensitive to the distances between red clover fields than to the actual bumblebee species that pollinates the fields. Using the suggested methodology, the gene flow may be predicted in different agricultural scenarios. For example, if the gene flow between red clover fields is mediated by Bombus terrestris and the red clover fields that were assumed to be quadrates with sides of 100 m are separated by 200 m, then the median gene flow is predicted to be 0.17%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bohart, G. E. (1958). Pollination of alfalfa and red clover. Annual Review of Entomology, 2, 355–380.

    Article  Google Scholar 

  2. Cant, L. T. (2006). Do roads and hedges influence patterns of pollinator foraging movement and consequent plant gene flow in a UK agricultural landscape? UK: University of Northampton.

    Google Scholar 

  3. Carlin, B. P., & Louis, T. A. (1996). Bayes and empirical Bayes methods for data analysis. London: Chapman & Hall.

    Google Scholar 

  4. Cresswell, J. E., & Osborne, J. L. (2004). The effect of patch size and separation on bumblebee foraging in oilseed rape: implications for gene flow. Journal of Applied Ecology, 41, 539–546.

    Article  Google Scholar 

  5. Cresswell, J. E., Osborne, J. L., & Bell, S. A. (2002). A model of pollinator-mediated gene flow between plant populations with numerical solutions for bumblebees pollinating oilseed rape. Oikos, 98, 375–384.

    Article  Google Scholar 

  6. Cunningham, S. A. (2000). Depressed pollination in habitat fragments causes low fruit set. Proceedings of the Royal Society of London Series B, Biological Sciences, 267, 1149–1152.

    Article  CAS  Google Scholar 

  7. Dick, C. W., Etchelecu, G., & Austerlitz, F. (2003). Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest. Molecular Ecology, 12, 753–764.

    Article  Google Scholar 

  8. EU (2003). EU Regulation (EC) no. 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC.

  9. Free, J. B. (1993). Insect pollination of crops, 2 ed. London: Academic.

    Google Scholar 

  10. Handel, S. N. (1983). Pollination ecology, plant population structure, and gene flow. In L. A. Real (Ed.), Pollination Biology (pp. 163–211). London: Academic.

    Google Scholar 

  11. Harder, L. D., & Thomson, J. D. (1989). Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. American Naturalist, 133, 323–344.

    Article  Google Scholar 

  12. Hawkins, R. P. (1958). A survey of late-flowering and single cut red clover seed crops. Journal of the National Institute of Agricultural Botany, 8, 450–461.

    Google Scholar 

  13. Knight, M. E., Martin, A. P., Bishop, S., Osborne, J. L., Hale, R. J., Sanderson, R. A., et al. (2005). An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Molecular Ecology, 14, 1811–1820.

    Article  CAS  Google Scholar 

  14. Kölliker, R., Hermann, D., Boller, B., & F. W. (2003). Swiss Mattenklee landraces, a distinct and diverse genetic resource of red clover (Trifolium pratense L.). Theoretical and Applied Genetics, 107, 306–315.

    Article  CAS  Google Scholar 

  15. Osborne, J. L., Clark, S. J., Morris, R. J., Williams, I. H., Riley, J. R., Smith, A. D., et al. (1999). A landscape scale study of bumble bee foraging range and constancy, using harmonic radar. Journal of Applied Ecology, 36, 519–533.

    Article  Google Scholar 

  16. Osborne, J. L., Martin, A. P., Shortall, C. R., Todd, A. D., Goulson, D. G., Knight, M. E., et al. (2007) Quantifying and comparing bumblebee nest densities in gardens and countryside habitats. Journal of Applied Ecology (in press).

  17. Osborne, J. L., & Williams, I. H. (2001). Site constancy of bumble bees in an experimentally patchy habitat. Agriculture, Ecosystems and Environment, 83, 129–141.

    Article  Google Scholar 

  18. Plowright, R. C., & Hartling, L. K. (1981). Red clover pollination by bumble bees: a study of the dynamics of a plant–pollinator relationship. Journal of Applied Ecology, 18, 639–647.

    Article  Google Scholar 

  19. Rose, C., & Smith, M. D. (2001). Mathematical statistics with Mathematica. New York: Springer.

    Google Scholar 

  20. Schnabel, A., & L. H. J. (1995). Understanding the population genetic-structure of Gleditsia triacanthos L – The scale and pattern of pollen gene flow. Evolution, 49, 921–931.

    Article  Google Scholar 

  21. Simonsen, V., & Frydenberg, O. (1972). Genetics of Zoarces populations. II. Three loci determining esterase isozymes in eye and brain tissue. Hereditas, 70, 235–241.

    Article  CAS  Google Scholar 

  22. Skovgaard, O. S. (1943). Humlebiarternes bopladser og overvintringssteder. Tidsskrift for Planteavl, 47, 287–305.

    Google Scholar 

  23. Soltis, D. E., Haufler, C. H., Darrow, D. C., & Gastony, G. J. (1983). Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. American Fern Journal, 73, 9–27.

    Article  Google Scholar 

  24. Vaissière, B. E., Torre Grossa, J., Rodet, G., & Malabœuf, F. (1994). Sociality and pollen flow: direct evidence for effective in-hive pollen transfer. In A. Lenoir, G., Arnold, & M. Lepage (Eds.), Les Insectes Sociaux, 12ème Congress de l'Union Internationale pour l"Etude des Insectes Sociaux (p. 290). Paris: UIEIS.

    Google Scholar 

  25. Walther-Hellwig, K., & Frankl, R. (2000). Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hym., apidae), in an agricultural landscape. Journal of Applied Entomology, 124, 299–306.

    Article  Google Scholar 

  26. Waser, N. M., & Price, M. V. (1983). Optimal and actual outcrossing in plants, and the nature of plant–pollinator interaction. In C. E. Jones, & R. J. Little (Eds.), Handbook of experimental pollination biology (pp. 341–359). New York, USA: Van Nostrand.

    Google Scholar 

  27. Westphal, C., Steffan-Dweneter, I., & Tsharntke, T. (2006). Bumblebees experience landscapes at different spatial scales: possible implications for coexistence. Oecologia, 149, 289–300.

    Article  Google Scholar 

  28. White, G. M., Boshier, D. H., & Powell, W. (2002). Increased pollen flow counteracts fragmentation in a tropical dry forest: An example from Swietenia humilis Zuccarini. Proceedings of the National Academy of Sciences of the United States of America, 99, 2038–2042.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Thanks to Anne Marie Plejdrup for her dedicated work with the bees and Tommy Silberg for helping with the electrophoresis. J.L.O. at Rothamsted receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the UK. Thanks to Martin Hoyle and an anonymous reviewer for valuable comments on a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Damgaard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Damgaard, C., Simonsen, V. & Osborne, J.L. Prediction of Pollen-Mediated Gene Flow Between Fields of Red Clover (Trifolium pratense). Environ Model Assess 13, 483–490 (2008). https://doi.org/10.1007/s10666-007-9112-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-007-9112-8

Keywords

Navigation