Skip to main content

Advertisement

Log in

Combining policy instruments for sustainable energy systems: An assessment with the GMM model

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

An assessment of the impact of an illustrative portfolio of policy instruments that address different sustainability concerns in the global energy system in areas of climate change, air pollution and introduction of renewable-energy resources is conducted. The effects of a policy set containing three instruments, implemented either individually or in combination, were examined. The policy instruments under examination in this work include: Cap-and-Trade policies imposing a CO2 emission reduction target on the global energy system, a renewable portfolio standard that forces a minimum share of renewable electricity generation, and the internalisation of external costs of power generation associated with local pollution. Implementation of these policy instruments significantly changes the structure and environmental performance of the energy sector, and particularly the structure of the electric-generation sector. The positive effects are amplified when the policy instruments are simultaneously applied, illustrating the potential for synergies between these energy-policy domains. The analysis has been conducted with the multi-regional, energy-system Global MARKAL Model (GMM), a “bottom-up” partial-equilibrium model that provides a detailed representation of energy technologies and endogenizes technology learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. IEA (International Energy Agency), Towards a Sustainable Energy Future (International Energy Agency (IEA), Paris, France, 2001).

    Google Scholar 

  2. L. Schrattenholzer, A. Miketa, K. Riahi, R. Roehrl, B. Zhu, G. Totschnig and M. Strubegger, Achieving a sustainable global energy system, in: ESRI Studies Series on the Environment (Edward Elgar, Cheltenham, United Kingdom, 2004).

    Google Scholar 

  3. EC (European Commission), Communication from the Commission on Impact Assessment (Document COM(2002) 276 Final, European Commission, Brussels, Belgium, 2002).

  4. IEA (International Energy Agency), Creating Markets for Energy Technologies (International Energy Agency (IEA), Paris, France, 2003).

    Google Scholar 

  5. N. Beg, J.C. Morlot, O. Davidson, Y. Afrane-Okesse, L. Tyani, F. Denton, Y. Sokona, J.P. Thomas, E. Lèbre La Rovere, J.K. Parikh, K. Parikh and A. Rahman, Linkages between climate change and sustainable development, Climate Policy 77 (2002) 1–16.

    Google Scholar 

  6. L. Barreto, Technological Learning in Energy Optimisation Models and Deployment of Emerging Technologies, PhD dissertation No. 14151, ETH, Zurich, Switzerland (2001).

  7. L. Barreto and S. Kypreos, Emissions trading and technology deployment in an energy-systems “Bottom-Up” model with technology learning, Eur. J. Oper. Res. 158 (2004) 243–261.

    Article  Google Scholar 

  8. P. Rafaj, S. Kypreos and L. Barreto, Flexible carbon mitigation policies: Analysis with a global multi-regional MARKAL model, in: Coupling Climate and Economic Dynamics, eds. A. Haurie and L. Viguier (Springer, Dordrecht, the Netherlands, 2005).

    Google Scholar 

  9. L.G. Fishbone and H. Abilock, MARKAL, a linear-programming model for energy systems analysis: Technical description of the BNL version, Int. J. Energy Res. 5 (1981) 353–375.

    Google Scholar 

  10. IPCC (Intergovernmental Panel on Climate Change), Special Report on Emission Scenarios, A Special Report of the Working Group III of Intergovernmental Panel on Climate Change (Cambridge University Press, Cambridge, UK, 2000).

    Google Scholar 

  11. K. Riahi and R.A. Roehrl, Greenhouse gas emissions in a dynamics-as-usual scenario of economic and energy development, Technological Forecasting and Social Change 63(2–3) (2000) 175–205.

    Article  Google Scholar 

  12. L. Barreto and S. Kypreos, Multi-regional technological learning in the energy-systems MARKAL model, Int. J. Glob Energy Issues 17(3) (2002) 189–213.

    Google Scholar 

  13. R. Loulou, G. Goldstein and K. Noble, Documentation for the MARKAL Family of Models, Energy Technology Systems Analysis Programme (ETSAP)/IEA (2004) (http://www.etsap.org/tools.htm).

  14. S. Messner, Endogenised technological learning in an energy systems model, J. Evol. Econ. 7 (1997) 291–313.

    Article  Google Scholar 

  15. A. McDonald and L. Schrattenholzer, Learning rates for energy technologies, Energy Policy 29(4) (2001) 255–261.

    Article  Google Scholar 

  16. R. Loulou and D. Lavigne, MARKAL model with elastic demands: Application to greenhouse gas emission control, in: Operations Research and Environmental Management, eds. C. Carraro and A. Haurie (Kluwer Academic Publishers, The Netherlands 1996) pp. 201–220.

    Google Scholar 

  17. A. Kanudia and R. Loulou, Advanced bottom-up modelling for national and regional energy planning in response to climate change, Int. J. Environ. Pollut. 12(2–3) (1999) 191–216.

    CAS  Google Scholar 

  18. UNFCCC (United Nations Framework Convention on Climate Change), The Kyoto Protocol to the Convention on Climate Change, UNFCCC Climate Change Secretariat and UNEP, UNEP/IUC/99/10, Geneva, Switzerland (1999).

  19. EC (European Commission), ExternE – Externalities of Energy, JOULE III Non-Nuclear-Energy Programme, ExternE Final Report (1998) (see also: http://externe.jrc.es).

  20. T.M.L. Wigley, R. Richels and J.A. Edmonds, Economic and environmental choices in the stabilization of atmospheric CO2 concentrations, Nature 379 (1996) 240–243.

    Article  CAS  Google Scholar 

  21. O. Blanchard, P. Criqui, A. Kitous and L. Viguier, Combining efficiency with equity: A pragmatic approach, in: Providing Global Public Goods: Managing Globalization, eds. I. Kaul, P. Conceição, K. Le Goulven and R.U. Mendoza (Oxford University Press, New York, 2003).

    Google Scholar 

  22. G.J. Schaeffer, M.G. Boots, J.W. Martens and M.H. Voogt, Tradable green certificates: a new market-based incentive scheme for renewable energy: Introduction and analysis, Report ECN-I-99-004, Petten, The Netherlands (1999).

  23. UNDP (United Nations Development Programme), World energy assessment: Energy and the challenge of sustainability, United Nations Development Programme, United Nations Department of Economic and Social Affairs, World Energy Council, ed. J. Goldemberg (New York, USA, 2000).

  24. ACROPOLIS (Assessing Climate Response Options: POLIcy Simulations), Final report April 2001–September 2003, Prepared by IER Germany and IPTS-JRC Spain, Contract No: ENK6-CT-2000-00443, Framework Programme V (2003).

  25. GeoHive, Global Statistics, Electronic database of global statistical information maintained by J. van der Heyden (2003) (see also: http://www.geohive.com).

  26. W. Hinrichs, Stoffmengenflüsse und Energiebedarf bei der Gewinnung ausgewählter mineralischer Rohstoffe, Teilstudie Steinkohle, Reihe H, Wirtschaftsgeologie, Berichte zur Rohstoffwirtschaft, Heft SH 4, Geologisches Jahrbuch, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, Germany (1999).

  27. J.-C. Hourcade, M. Haduong, A. Gruebler and R.S.J. Tol, INASUD project findings on integrated assessment of climate policies, Integrated Assessment 2(1) (2001) 31–35.

    Article  Google Scholar 

  28. A. Miketa and L. Schrattenholzer, Equity implications of two burden-sharing rules for stabilizing greenhouse-gas concentrations, Energy Policy, in press, Available online 8 October 2004.

  29. P. Rafaj, Analysis of Policies Contributing to Sustainability of the Global Energy System Using the Global Multi-regional Markal Model (GMM), PhD Dissertation No 16122, ETH, Zurich, Switzerland (2005).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Rafaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafaj, P., Barreto, L. & Kypreos, S. Combining policy instruments for sustainable energy systems: An assessment with the GMM model. Environ Model Assess 11, 277–295 (2006). https://doi.org/10.1007/s10666-005-9037-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-005-9037-z

Keywords

Navigation