Skip to main content
Log in

Modeling nonlinearly transient zero-order bioreduction and transport of Cr(VI) in groundwater

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Cr(VI) contamination of soil and groundwater is considered a major environmental concern. Bioreduction of Cr(VI) to Cr(III) can be considered a potentially effective technology in remediating Cr(VI) contaminated sites. Shewanella oneidensis MR-1 (MR-1) is one of the bacteria capable of reducing Cr(VI) to Cr(III) under anaerobic conditions. The kinetics of Cr(VI) reduction by MR-1 is defined by the dual-enzyme kinetic model which is nonlinear, transient, and zero-order. Existing transport models are not designed to simulate such reaction kinetics. The objective of this paper is to present a Petrov–Galerkin finite element model (PGFEM) to simulate transport and bioreduction of Cr(VI), by MR-1, in groundwater. The model developed is unconditionally stable and provides oscillation free accurate results for a wide range of Peclet number (Pn) and Courant number (Cn).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. R.G. Riley, J.M. Zachara, and F.J. Wobber, Chemical Contaminants on DOE Lands and Selection of Contaminant Mixtures for Subsurface Science Research (Department of Energy, Washington, District of Columbia, 1992) pp. ii-27.

    Google Scholar 

  2. J.A. Davis, D.V. Kent, B.A. Rea, A.E. Maest and S.P. Garabedial, Influence of redox environment and aqueous speciation on metal transport in groundwater: Preliminary results of tracer injection studies, in: Metals in Groundwater, eds. H.E. Allen, E.M. Purdue and D.S. Brown (1993) p. 223.

  3. J. Dragun, Element fixation in soil. The Soil Chemistry of Hazardous Material (Hazardous Materials Control Resources Institute, Greenbelt, Maryland, 1988) p. 75.

    Google Scholar 

  4. J. Barnhart, Chromium chemistry and implications for environmental fate and transport, J. Soil Contam. 6 (1997) 561–568.

    CAS  Google Scholar 

  5. H. Shen and Y.T. Wang, Modeling hexavalent chromium reduction in Escherichia coli 33456, Biotechnol. Bioeng. 43 (1994) 293–300.

    Article  CAS  Google Scholar 

  6. K. Fujie, H.Y. Hu, X. Huang, K. Urano and H. Ohtake, Optimal operation of bioreactor system developed for the treatment of chromate wastewater using Enterobacter cloacae HO-1, Water Sci. Technol. 43 (1996) 173–182.

    Article  Google Scholar 

  7. V.I. Romanenko and V.N. Koren'kov, A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya. Moscow, Russia, 43 (1997) 414–417.

    Google Scholar 

  8. H. Horitsu, Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1, Agric. Biol. Chem. 51 (1987) 2417–2420.

    CAS  Google Scholar 

  9. L.H. Bopp and H.L. Erlich, Chromate resistance and reduction in Pseudomonas fluorescens strain LB300, Arch. Microbiol. 150 (1988) 426–431.

    Article  CAS  Google Scholar 

  10. P. Wang, T. Mori, K. Komori, M. Sasatsu, K Toda and H. Ohtake, Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions, Appl. Environ. Microbiol. 55 (1989) 1665–1669.

    CAS  Google Scholar 

  11. J.M. Chen and O.J. Hao, Environmental factors and modeling in microbial chromium (VI) reduction, Water Environ. Res. 68 (1996) 1156–1164.

    Article  CAS  Google Scholar 

  12. Y.T. Wang and H. Shen, Bacterial reduction of hexavalent chromium, J. Ind. Microbiol. 14 (1995) 159–163.

    Article  PubMed  CAS  Google Scholar 

  13. C.E. Turick, W.A. Apel and N.S. Carmiol, Isolation of hexavalent chromium-reducing anaerobes from hexavalent-chromium-contaminated and noncontaminated environments, Appl. Microbiol. Technol. 44 (1996) 683–688.

    Article  CAS  Google Scholar 

  14. J.M. Chen and O.J. Hao, Biological removal of aqueous hexavalent chromium, J. Chem. Technol. Biotechnol. 69 (1997) 70–76.

    Article  CAS  Google Scholar 

  15. E.A. Schmieman, D.R. Yonge, M.A. Rege, J.N. Petersen, C.E. Turick, D.L. Johnstone and W.A. Apel, Comparative kinetics of bacterial reduction of chromium, ASCE, J. Environ. Eng. 124 (1998) 449–455.

    Article  CAS  Google Scholar 

  16. K. Venkateswaran, D.P. Moser, M.E. Dollhopf, D.P. Lies, D.A. Saffarani, B.J. MacGregor, D.B. Ringelberg, D.C. Ehite, M. Nishijima, H. Sano, J. Burghardt, E. Stackebrandt and K.H. Nealson, Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp, J. Syst. Bacteriol. 49 (1999) 705–724.

    CAS  Google Scholar 

  17. S. Viamajala, B.M. Peyton, W.A. Apel and J.N. Petersen, Chromate/Nitrite interactions in Shewanella oneidensis MR-1: Evidence for multiple hexavalent chromium Cr(VI) reduction mechanisms dependent on physiological growth conditions, Biotech. and Bioeng. 78(7) (2002) 770–778.

    Article  CAS  Google Scholar 

  18. S. Viamajala, B. Peyton and J.N. Petersen, Modeling chromate reduction in Shewanella oneidensis MR-1: development of a novel dual-enzyme kinetic model, Biotech. and Bioeng. 83(7) (2003) 790–797.

    Article  CAS  Google Scholar 

  19. C. Zheng and MT3D, A Modular Three-Dimensional Transport Model for Simulation of Advection, Dispersion and Chemical Reaction of Contaminants in Groundwater Systems (S.S. Papadopulos and Associates, Inc., Rockville, 1990).

    Google Scholar 

  20. T.P. Clement and RT3D, A Modular Computer Code for Simulating Reactive Multi-species Transport in 3-Dimensional Groundwater Aquifers (Pacific Northwest National Laboratory, Richland, Washington, 1997).

    Google Scholar 

  21. Geo-Slope International Ltd, CTRAN/W for Finite Element Contaminant Transport Analysis. (Calgary, Alberta, Canada, 1994).

  22. P.S. Huyakorn, J.B. Kool and J.B. Robertson, Documentation and User's Guide: VAM2D – Variably Saturated Analysis Model in Two Dimensions. NUREG/CR–5352, HGL/89–01. (HydroGeologic, Inc., Herndon, Virginia, 1989).

    Google Scholar 

  23. J. Donea, L. Quartapelle and V. Selmin, An analysis of time discretization in the finite element solution of hyperbolic problems, J. Comput. Phys. 70 (1987) 463–499.

    Article  Google Scholar 

  24. W.G. Gray and G.F. Pinder, An analysis of the numerical solution of the transport equation, Water Resour. Res. 12 (1976) 547–555.

    Article  Google Scholar 

  25. K. Huang, J. Simunek and M. Th. van Genuchten, A third-order numerical scheme with upwind weighting for solving the solute transport equation, Int. J. Numer. Methods Eng. 40 (1997) 1623–1637.

    Article  Google Scholar 

  26. G. Gottardi and M. Venutelli, One-dimensional moving finite element model of solute transport, Groundwater 32 (1994) 645–649.

    CAS  Google Scholar 

  27. A.D. Daus, E.O. Frind and E.A. Sudicky, Comparative error analysis in finite element formulations of the advection–dispersion equation, Adv. Water Resour. 8 (1985) 86–95.

    Article  Google Scholar 

  28. P.S. Huyakorn and K. Nilkuha, Solution of transient transport equation using an upstream finite element scheme, Appl. Math. Model. 3 (1979) 7–17.

    Article  Google Scholar 

  29. J.C. Heinrich, P.S. Huyakorn, O.C. Zienkiewicz and A.R. Mitchell, An upwind finite element scheme for two-dimensional convective transport equation, Int. J. Numer. Methods Eng. 11 (1977) 131–143.

    Article  Google Scholar 

  30. J. Noorishad, C.F. Tsang, P. Perrochet and A. Musy, A perspective on the numerical solution of convection-dominated transport problems: A price to pay for the easy way out, Water Resour. Res. 28 (1992) 551–561.

    Article  CAS  Google Scholar 

  31. M. Alam, Bioreduction of hexavalent chromium: flow through column experiments and reactive transport modeling. PhD thesis (Washington State University, Pullman, WA. 2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Hossain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hossain, A. Modeling nonlinearly transient zero-order bioreduction and transport of Cr(VI) in groundwater. Environ Model Assess 10, 315–321 (2005). https://doi.org/10.1007/s10666-005-9011-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-005-9011-9

Keywords

Navigation