Skip to main content
Log in

Response of SH waves in inhomogeneous functionally graded orthotropic layered structure with interfacial imperfections

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

The current work examines shear wave propagation in inhomogeneous functionally graded orthotropic media (FGOM) with imperfect contacts. The intermediate stratum is assumed to be viscous FGOM, while the upper and lower FGOMs have been endowed with initial stress. Closed-form displacement fields have been derived for both the layers and half space. The derivation process involves employing the interfacial stress-displacement continuity condition, which accounts for sliding and loosely bonded parameters, in conjunction with the requirement of a stress-free upper interface and a bounded lower half space. Special cases of previously published results in the literature were used to validate the analytical form of the dispersion relation. The study also includes a mathematical analysis of the dispersion equation as well as numerical computations for the presented geophysical model to characterize the impact of initially stressed parameters, inhomogeneity parameters, dissipation factor, and the effect of interface imperfectness on shear wave velocity. Notably, the study emphasizes the effect of sliding interface on the propagation of SH waves at the lower contact. The current finding adds to our understanding of shear wave propagation dynamics in elastic inhomogeneous functionally graded materials, which can help with earthquake engineering design and execution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All the data that supports the findings of this study are present in the submitted article. With the help of these data and MATLAB software, codes were generated to plot the graphs.

References

  1. Achenbach JD (1973) Wave propagation in elastic solids. North-Holland Publisher Company, New York

    MATH  Google Scholar 

  2. Sheriff RE, Geldart LP (1995) Exploration seismology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Sadd MH (2009) Elasticity: theory, applications, and numerics. Academic Press, Cambridge

    Google Scholar 

  4. Ewing WM, Jardetzky WS, Press F (1957) Elastic waves in layered media. McGraw-Hill, New York

    Book  MATH  Google Scholar 

  5. Stein S, Wysession M (2009) An introduction to seismology, earthquakes, and earth structure. Wiley, New York

    Google Scholar 

  6. Kumar P, Mahanty M, Chattopadhyay A (2018) An overview of stress-strain analysis for elasticity equations. In: Günay E (ed) Elasticity of materials-basic principles and design of structures. Books on Demand, Norderstedt

    Google Scholar 

  7. Kumar P, Chattopadhyay A, Mahanty M, Singh AK (2019) Analysis on propagation characteristics of the shear wave in a triple layered concentric infinite long cylindrical structure: an analytical approach. Eur Phys J Plus 134(1):35

    Article  Google Scholar 

  8. Kumar P, Singh AK, Chattopadhyay A (2021) Influence of an impulsive source on shear wave propagation in a mounted porous layer over a foundation with dry sandy elastic stratum and functionally graded substrate under initial stress. Soil Dyn Earthq Eng 142:106536

    Article  Google Scholar 

  9. Kumar P, Mahanty M, Singh AK, Chattopadhyay A (2021) Analytical study on stress intensity factor due to the propagation of Griffith crack in a crystalline monoclinic layer subjected to punch pressure. Fatigue Fract Eng Mater Struct 44(2):475–487

    Article  Google Scholar 

  10. Kumar P, Chattopadhyay A, Mahanty M, Singh AK (2019) Stresses induced by a moving load in a composite structure with an incompressible poroviscoelastic layer. J Eng Mech 145(9):04019062

    Article  Google Scholar 

  11. Adams GG (2000) Radiation of body waves induced by the sliding of an elastic half-space against a rigid surface. J Appl Mech 67(1):1–5

    Article  MathSciNet  MATH  Google Scholar 

  12. Brener EA, Weikamp M, Spatschek R, Bar-Sinai Y, Bouchbinder E (2016) Dynamic instabilities of frictional sliding at a bimaterial interface. J Mech Phys Solids 89:149–173

    Article  MathSciNet  MATH  Google Scholar 

  13. Kelvin K, David T (1971) An ultrasonic study of the area of contact between stationary and sliding surfaces. Proc R Soc A 323(1554):321–340

    Google Scholar 

  14. Tomar SK, Kaur N (2019) Role of sliding contact interface on torsional waves. Math Student 88:125–138

    MathSciNet  Google Scholar 

  15. Kumari P, Tomar SK, Sharma VK (2022) Dynamical behaviour of torsional waves in a layered composite structure with sliding contact. Arab J Geosci 15(6):546

    Article  Google Scholar 

  16. Kumari P, Srivastava R (2021) On reflection and transmission of qP waves in initially stressed viscoelastic triclinic layer between distinct triclinic geomedia with sliding interface. Waves Random Complex Media 1–36

    Article  Google Scholar 

  17. Kumari P, Srivastava R (2023) Analysis of quasi waves in orthotropic layer bonded between piezoelectric half-spaces with imperfect and sliding interfaces. J Vib Eng Technol 1–26

    Article  Google Scholar 

  18. Mistri KCh, Singh AK, Das A (2018) Attenuation and dispersion of SH-waves in a loosely bonded sandwiched fluid saturated porous layer. Soil Dyn Earthq Eng 107:350–362

    Article  Google Scholar 

  19. Singh AK, Lakshman A (2016) Effect of loosely bonded undulated boundary surfaces of doubly layered half-space on the propagation of torsional wave. Mech Res Commun 73:91–106

    Article  Google Scholar 

  20. Singh MK, Sahu SA (2017) Torsional wave propagation in a pre-stressed structure with corrugated and loosely bonded surfaces. J Theor Appl Mech 47(4):48–74

    Article  MathSciNet  MATH  Google Scholar 

  21. Nandal JS, Saini TN (2013) Reflection and refraction at an imperfectly bonded interface between poroelastic solid and cracked elastic solid. J Seismolog 17(2):239–253

    Article  Google Scholar 

  22. Banghar AR, Murty GS, Raghavacharyulu IVV (1976) On the parametric model of loose bonding of elastic half spaces. J Acoust Soc Am 60(5):1071–1078

    Article  MATH  Google Scholar 

  23. Kumar P, Mahanty M, Chattopadhyay A, Singh AK (2020) Green’s function technique to study the influence of heterogeneity on horizontally polarised shear-wave propagation due to a line source in composite layered structure. J Vib Control 26(9–10):701–712

    Article  MathSciNet  Google Scholar 

  24. Ge H, Guo L, Yu H (2020) Modelling method for periodic cracks in functionally graded strips with arbitrary properties. Mech Mater 148:103512

    Article  Google Scholar 

  25. Xu H, Yao X, Feng X, Hisen YY (2008) Dynamic stress intensity factors of a semi-infinite crack in an orthotropic functionally graded material. Mech Mater 40(1–2):37–47

    Article  Google Scholar 

  26. Yu J, Zhang Ch (2014) Effects of initial stress on guided waves in orthotropic functionally graded plates. Appl Math Model 38(2):464–478

    Article  MathSciNet  MATH  Google Scholar 

  27. Goyal R, Kumar S (2021) Estimating the effects of imperfect bonding and size-dependency on Love-type wave propagation in functionally graded orthotropic material under the influence of initial stress. Mech Mater 155:103772

    Article  Google Scholar 

  28. Altenbach H, Eremeyev VA (2008) Analysis of the viscoelastic behaviour of plates made of functionally graded materials. ZAMM-J Appl Math Mech 88(5):332–341

    Article  MATH  Google Scholar 

  29. Altenbach H, Eremeyev VA (2010) Mechanics of viscoelastic plates made of FGMs. Comput Model Adv Simul 24:33–48

    MathSciNet  MATH  Google Scholar 

  30. Altenbach H, Eremeyev VA (2008) Direct approach-based analysis of plates composed of functionally graded materials. Arch Appl Mech 78(10):775–794

    Article  MATH  Google Scholar 

  31. Reddy JN (2000) Analysis of functionally graded plates. Int J Numer Meth Eng 47(1–3):663–684

    Article  MATH  Google Scholar 

  32. Chattopadhyay A, Gupta S, Sharma VK, Kumari P (2010) Propagation of shear waves in viscoelastic medium at irregular boundaries. Acta Geophys 58(2):195–214

    Article  Google Scholar 

  33. Pandit DK, Kundu S, Gupta S (2017) Propagation of Love waves in a prestressed Voigt-type viscoelastic orthotropic functionally graded layer over a porous half-space. Acta Meccanica 228(3):871–880

    Article  MathSciNet  MATH  Google Scholar 

  34. Gupta S, Das SK (2021) Dynamic response to dispersion and absorption characteristics of shear waves in a Voigt-type viscoelastic orthotropic functionally graded layer. Geomech Geoeng 16(3):223–236

    Article  Google Scholar 

  35. Biot MA (1965) Mechanics of incremental deformation. Wiley, New York

    Book  Google Scholar 

  36. Manna S, Anjali T (2020) Rayleigh type wave dispersion in an incompressible functionally graded orthotropic half-space loaded by a thin fluid-saturated aeolotropic porous layer. Appl Math Model 83:590–613

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the reviewers for their valuable suggestions and insightful comments that led improvement in the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Pato Kumari developed the mathematical model of the problem. Payal wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Pato Kumari.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article. The authors have no competing interests to declare that are relevant to the content of this article. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Details of the mathematical expressions used in the dispersion equation

Appendix: Details of the mathematical expressions used in the dispersion equation

\({r}_{1}={k}_{1}^{2}{\rho }_{2}{c}^{2}-{k}_{1}^{2}{\delta }^{2}{\rho }_{2}{c}^{2}-{k}_{1}^{2}{\xi }_{66}+{k}_{1}^{2}{\delta }^{2}{\xi }_{66}+2{k}_{1}^{2}{\zeta }_{66}\omega \delta,\)

\({r}_{2}=2{k}_{1}^{2}\delta {\rho }_{2}{c}^{2}-2{k}_{1}^{2}\delta {\xi }_{66}-{\zeta }_{66}\omega {k}_{1}^{2}+{k}_{1}^{2}{\delta }^{2}{\zeta }_{66}\omega,\)

\({r}_{3}={\xi }_{44}\), \({r}_{4}={\xi }_{44}{Q}_{1}\), \({r}_{5}=4{r}_{2}+{\beta }^{2}{r}_{3}\), \({r}_{6}=4{r}_{2}+{\beta }^{2}{r}_{4}\), \({r}_{7}=4{r}_{3}\), \({r}_{8}=4{r}_{4},\)

\({r}_{9}=\frac{{r}_{5}{r}_{7}+{r}_{6}{r}_{8}}{{r}_{7}^{2}+{r}_{8}^{2}}\), \({r}_{10}=\frac{-{r}_{5}{r}_{8}+{r}_{6}{r}_{7}}{{r}_{7}^{2}+{r}_{8}^{2}},\) \({m}_{2}^{\prime}=\pm \sqrt{\frac{\sqrt{\left({r}_{9}^{2}+{r}_{10}^{2}\right)}+{r}_{9}}{2}},\)

$${\chi }_{11}={a}_{1}\left[1+\sin({\alpha }_{1}{H}_{2})\right]\left\{\frac{{m}_{1}{e}^{{-m}_{1}{H}_{2}}}{\sqrt{1+\sin({\alpha }_{1}{H}_{2})}}+\frac{{\alpha }_{1}\cos({\alpha }_{1}{H}_{2}){e}^{{-m}_{1}{H}_{2}}}{{2\left[1+\sin({\alpha }_{1}{H}_{2})\right]}^{\frac{3}{2}}}\right\},$$
$${\chi }_{12}={a}_{1}\left[1+\sin({\alpha }_{1}{H}_{2})\right]\left\{\frac{{-m}_{1}{e}^{{m}_{1}{H}_{2}}}{\sqrt{1+\sin({\alpha }_{1}{H}_{2})}}+\frac{{\alpha }_{1}\cos({\alpha }_{1}{H}_{2}){e}^{{m}_{1}{H}_{2}}}{{2\left[1+\sin({\alpha }_{1}{H}_{2})\right]}^{\frac{3}{2}}}\right\},$$
$${\chi }_{21}={a}_{1}\left[1+\sin({\alpha }_{1}{H}_{1})\right]\left\{\frac{{m}_{1}{e}^{{-m}_{1}{H}_{1}}}{\sqrt{1+\sin({\alpha }_{1}{H}_{1})}}+\frac{{\alpha }_{1}\cos({\alpha }_{1}{H}_{1}){e}^{{-m}_{1}{H}_{1}}}{{2\left[1+\sin({\alpha }_{1}{H}_{1})\right]}^{\frac{3}{2}}}\right\},$$
$${\chi }_{22}={a}_{1}\left[1+\sin({\alpha }_{1}{H}_{1})\right]\left\{\frac{{-m}_{1}{e}^{{m}_{1}{H}_{1}}}{\sqrt{1+\sin({\alpha }_{1}{H}_{1})}}+\frac{{\alpha }_{1}\cos({\alpha }_{1}{H}_{1}){e}^{{m}_{1}{H}_{1}}}{{2\left[1+\sin({\alpha }_{1}{H}_{1})\right]}^{\frac{3}{2}}}\right\},$$
$${\chi }_{23}=-\left({\xi }_{44}+i\omega {\zeta }_{44}\right)\left[1+\mathrm{sin}\left({\alpha }_{1}{H}_{2}\right)\right]\left\{\frac{{-m}_{2}\mathrm{sin}\left({m}_{2}{H}_{1}\right)}{\sqrt{1-\mathrm{sin}\left(\beta {H}_{1}\right)}}-\frac{\beta \mathrm{cos}\left(\beta {H}_{1}\right)\mathrm{cos}\left({m}_{2}{H}_{1}\right)}{{2\left[1-\mathrm{sin}\left(\beta {H}_{1}\right)\right]}^{\frac{3}{2}}}\right\},$$
$${\chi }_{24}=-\left({\xi }_{44}+i\omega {\zeta }_{44}\right)\left[1+\mathrm{sin}\left({\alpha }_{1}{H}_{2}\right)\right]\left\{\frac{{m}_{2}\mathrm{cos}\left({m}_{2}{H}_{1}\right)}{\sqrt{1-\mathrm{sin}\left(\beta {H}_{1}\right)}}+\frac{\beta \mathrm{cos}\left(\beta {H}_{1}\right)\mathrm{sin}\left({m}_{2}{H}_{1}\right)}{{2\left[1-\mathrm{sin}\left(\beta {H}_{1}\right)\right]}^{\frac{3}{2}}}\right\},$$
$$ \begin{aligned} \chi _{{31}} & = a_{1} \left( {1 - \Omega } \right)\left[ {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} \right]\left\{ {\frac{{m_{1} e^{{ - m_{1} H_{1} }} }}{{\sqrt {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} }} + \frac{{\alpha _{1} {\text{cos}}\left( {\alpha _{1} H_{1} } \right)e^{{ - m_{1} H_{1} }} }}{{2\left[ {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} \right]^{{\frac{3}{2}}} }}} \right\} \\ & \quad - \frac{{ikc}}{{c_{2} }}\Omega \left( {\xi _{{44}} + i\omega \zeta _{{44}} } \right)\left( {1 - {\text{sin}}\left( {\beta H_{1} } \right)} \right)\left( {\frac{{e^{{ - m_{1} H_{1} }} }}{{\sqrt {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} }}} \right), \\ \end{aligned} $$
$$ \begin{aligned} \chi _{{32}} & = a_{1} \left( {1 - \Omega } \right)\left[ {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} \right]\left\{ {\frac{{ - m_{1} e^{{ - m_{1} H_{1} }} }}{{\sqrt {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} }} + \frac{{\alpha _{1} {\text{cos}}\left( {\alpha _{1} H_{1} } \right)e^{{m_{1} H_{1} }} }}{{2\left[ {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} \right]^{{\frac{3}{2}}} }}} \right\} \\ & \quad - \frac{{ikc}}{{c_{2} }}\Omega \left( {\xi _{{44}} + i\omega \zeta _{{44}} } \right)\left( {1 - {\text{sin}}\left( {\beta H_{1} } \right)} \right)\left( {\frac{{e^{{m_{1} H_{1} }} }}{{\sqrt {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} }}} \right), \\ \end{aligned} $$
$${\chi }_{33}=-\frac{ikc}{{c}_{2}}\Omega \left({\xi }_{44}+i\omega {\zeta }_{44}\right)\left(1-\mathrm{sin}\left(\beta {H}_{1}\right)\right)\left(\frac{\mathrm{cos}({m}_{2}{H}_{1)}}{\sqrt{1-\mathrm{sin}\left(\beta {H}_{1}\right)}}\right),$$
$${\chi }_{34}=-\frac{ikc}{{c}_{2}}\Omega \left({\xi }_{44}+i\omega {\zeta }_{44}\right)\left(1-\mathrm{sin}\left(\beta {H}_{1}\right)\right)\left(\frac{\mathrm{sin}({m}_{2}{H}_{1)}}{\sqrt{1-\mathrm{sin}\left(\beta {H}_{1}\right)}}\right),$$

\({\chi }_{43}=-({\xi }_{44}+i\omega {\zeta }_{44})\frac{\beta }{2},\) \({\chi }_{44}=({\xi }_{44}+i\omega {\zeta }_{44}){m}_{2},\) \({\chi }_{45}=-{b}_{1}(1-\eta )\left(\frac{{\alpha }_{2}-2{m}_{1}}{2}\right)\)

\({\chi }_{53}=-\eta ({\xi }_{44}+i\omega {\zeta }_{44}){m}_{2}+(1-\eta )kF,\) \({\chi }_{54}=\eta ({\xi }_{44}+i\omega {\zeta }_{44}){m}_{2},\) \({\chi }_{55}=\left(1-\eta \right){k}_{1}F\)

$${\chi^{\prime}}_{23}=-\left[1+\mathrm{sin}\left({\alpha }_{1}{H}_{2}\right)\right]{\xi }_{44}\left\{\frac{-{m}_{2}^{\prime}\mathrm{sin}\left({{m}^{\prime}}_{2}{H}_{1}\right)}{\sqrt{1-\mathrm{sin}\left(\beta {H}_{1}\right)}}-\frac{\beta \mathrm{cos}\left(\beta {H}_{1}\right)\mathrm{cos}\left({m}_{2}^{\prime}{H}_{1}\right)}{{2\left[1-\mathrm{sin}\left(\beta {H}_{1}\right)\right]}^{\frac{3}{2}}}\right\},$$
$${\chi^{\prime}}_{24}=-\left[1+\mathrm{sin}\left({\alpha }_{1}{H}_{2}\right)\right]{\xi }_{44}\left\{\frac{{{m}^{\prime}}_{2}\mathrm{cos}\left({m}_{2}^{\prime}{H}_{1}\right)}{\sqrt{1-\mathrm{sin}\left(\beta {H}_{1}\right)}}+\frac{\beta \mathrm{cos}\left(\beta {H}_{1}\right)\mathrm{sin}\left({m}_{2}^{\prime}{H}_{1}\right)}{{2\left[1-\mathrm{sin}\left(\beta {H}_{1}\right)\right]}^{\frac{3}{2}}}\right\},$$
$$ \begin{aligned} \chi ^{\prime } _{{31}} & = a_{1} \left( {1 - \Omega } \right)\left[ {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} \right]\left\{ {\frac{{m_{1} e^{{ - m_{1} H_{1} }} }}{{\sqrt {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} }} + \frac{{\alpha _{1} {\text{cos}}\left( {\alpha _{1} H_{1} } \right)e^{{ - m_{1} H_{1} }} }}{{2\left[ {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} \right]^{{\frac{3}{2}}} }}} \right\} \\ & \quad - \frac{c}{{c_{2} }}\Omega \left( {k_{1} \delta \xi _{{44}} - \omega k_{1} \zeta _{{44}} } \right)\left( {1 - {\text{sin}}\left( {\beta H_{1} } \right)} \right)\left( {\frac{{e^{{ - m_{1} H_{1} }} }}{{\sqrt {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} }}} \right), \\ \end{aligned} $$
$$ \begin{aligned} \chi ^{\prime } _{{32}} & = a_{1} \left( {1 - \Omega } \right)\left[ {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} \right]\left\{ {\frac{{ - m_{1} e^{{ - m_{1} H_{1} }} }}{{\sqrt {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} }} + \frac{{\alpha _{1} {\text{cos}}\left( {\alpha _{1} H_{1} } \right)e^{{m_{1} H_{1} }} }}{{2\left[ {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} \right]^{{\frac{3}{2}}} }}} \right\} \\ & \quad - \frac{c}{{c_{2} }}\Omega \left( {k_{1} \delta \xi _{{44}} - \omega k_{1} \zeta _{{44}} } \right)\left( {1 - {\text{sin}}\left( {\beta H_{1} } \right)} \right)\left( {\frac{{e^{{m_{1} H_{1} }} }}{{\sqrt {1 + {\text{sin}}\left( {\alpha _{1} H_{1} } \right)} }}} \right), \\ \end{aligned} $$
$${\chi^{\prime}}_{33}=-\frac{c}{{c}_{2}}\Omega \left({k}_{1}\delta {\xi }_{44}-\omega {k}_{1}{\zeta }_{44}\right)\left(1-\mathrm{sin}\left(\beta {H}_{1}\right)\right)\left(\frac{\mathrm{cos}({m}_{2}^{\prime}{H}_{1)}}{\sqrt{1-\mathrm{sin}\left(\beta {H}_{1}\right)}}\right),$$
$${\chi^{\prime}}_{34}=-\frac{c}{{c}_{2}}\Omega \left({k}_{1}\delta {\xi }_{44}-\omega {k}_{1}{\zeta }_{44}\right)\left(1-\mathrm{sin}\left(\beta {H}_{1}\right)\right)\left(\frac{\mathrm{sin}({m}_{2}^{\prime}{H}_{1)}}{\sqrt{1-\mathrm{sin}\left(\beta {H}_{1}\right)}}\right),$$

\({\chi^{\prime}}_{43}=-{\xi }_{44}\frac{\beta }{2}\) , \({\chi^{\prime}}_{44}={\xi }_{44}{m}_{2}\) , \({\chi^{\prime}}_{53}=-\eta {\xi }_{44}{{m}^{\prime}}_{2}+\left(1-\eta \right){k}_{1}F\) , \({\chi^{\prime}}_{54}=\eta {\xi }_{44}{m^{\prime}}_{2}.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, P., Payal Response of SH waves in inhomogeneous functionally graded orthotropic layered structure with interfacial imperfections. J Eng Math 142, 6 (2023). https://doi.org/10.1007/s10665-023-10290-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-023-10290-7

Keywords

Mathematics Subject Classification

Navigation