Skip to main content
Log in

Modeling single-phase fluid flow in porous media through non-local fractal continuum equation

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

Modeling fluid flow in highly heterogeneous porous media is an open research topic due to the degree of complexities and uncertainties attributable mainly to the spatial variations of media properties. Mathematical models capable of effectively capturing such complexities are valuable tools to obtain insights into the underlying phenomenology and characterize the system behavior under different boundary conditions or model parameters. In this context, we present a non-local model complemented by the fractal continuum theory to describe single-phase flow in highly heterogeneous porous media. We use the generalized Laplacian operator and the non-local (subdiffusive) Darcy’s law to formulate a fluid flow model suitable for fractal porous media with non-local effects. We analyze the dynamics of radially symmetric flow geometry according to radially convergent flow appearing in reservoirs and aquifers. Pressure-transient drop and rate-transient flow scenarios were analyzed for different fractal dimensions and anomalous parameters. The results show that the model parameters associated with the anomalous flow have clear and distinctive effects in field tests, providing a theoretical tool to explore different scenarios under anomalous flow that could be useful for improving our understanding of fluid flow in porous media with complex geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hewett TA (1986) Fractal distributions of reservoirs heterogeneity and their influence on fluid transport. SPE-15386-MS Annual Technical Conferences and Exhibition

  2. Chang J, Yortsos YC (1990) Pressure transient analysis of fractal reservoirs. SPEFE: 31–38

  3. Chang J, Yortsos YC (1992) A note on pressure-transient analysis of fractal reservoirs. SPE-ATS 25296 1(2):1–2

    Google Scholar 

  4. O’Shaughnessy B, Proccacia I (1985) Diffusion on fractals. Phys Rev Lett 54(5):455–458

    MathSciNet  Google Scholar 

  5. Havlin S, Ben-Avraham D (1987) Diffusion in disordered media. Adv Phys 36:695

    Article  Google Scholar 

  6. Tan XH, Li XP, Zhang LH, Liu JY (2015) Analysis of transient flow and starting pressure gradient of power-law fluid in fractal porous media. Int J Mod Phys C 26(4):1550045

    Article  MathSciNet  Google Scholar 

  7. Barker JA (1988) A generalized radial flow model for hydraulic test in fractured rock. Water Resour Res 24(10):1796–1804

    Article  Google Scholar 

  8. Metzler R, Glöckle WG, Nonnenmacher TF (1994) Fractional model equation for anomalous diffusion. Physica A 211:13–24

    Article  Google Scholar 

  9. Park HW, Choe J, Kang JM (2000) Pressure behavior of transport in fractal porous media using a fractional calculus approach. Energy Sources 22:881–890

    Article  Google Scholar 

  10. Sen M, Ramos E (2012) A spatially non-local model for flow in porous media. Transp Porous Med 92:29–39

    Article  MathSciNet  Google Scholar 

  11. Hernández D, Núñez-López M, Velasco-Hernández JX (2013) Telegraphic double porosity models for head transient behavior in naturally fractured aquifers. Water Resour Res 49:4399–4408

    Article  Google Scholar 

  12. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  Google Scholar 

  13. Hernández D, Herrera-Hernández EC (2021) Non-local diffusion models for fractured porous media with pressure tests applications. Adv Water Resour 149:14

    Article  Google Scholar 

  14. Chen W (2006) Time-space fabric underlying anomalous diffusion. Chaos Solit Fractals 28:923–929

    Article  MATH  Google Scholar 

  15. Chen W, Sun H, Zhang X, Korosak D (2010) Anomalous diffusion modeling by fractal and fractional derivatives. Comput Maths Appl 59:1754–1758

    MathSciNet  MATH  Google Scholar 

  16. He JH (2018) Fractal calculus and its geometrical explanation. Results Phys 10:272–276

    Article  Google Scholar 

  17. Ji-Huan H (1998) Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput Methods Appl Mech Eng 167:57–68

    Article  MathSciNet  Google Scholar 

  18. Caputo M (1999) Diffusion of fluid in porous media with memory. Geothermics 28:113–130

    Article  Google Scholar 

  19. Caputo M (2000) Models of flux in porous media with memory. Water Resour Res 36:693–706

    Article  Google Scholar 

  20. Baeumer B, Kurita S, Meerschaert MM (2005) Inhomogeneous fractional diffusion equations. Fracture 8:371–386

    MathSciNet  MATH  Google Scholar 

  21. Hossain ME, Mousavizadegan SH, Islam MR (2008) A novel fluid flow model with memory for porous media applications. MRDM Conference-2008 108

  22. Hossain ME, Mousavizadegan SH, Islam MR (2009) Effects of memory on the complex rock-fluid properties of a reservoir stress–strain model. Pet Sci Technol. 27:1109–1123

    Article  Google Scholar 

  23. Raghavan R, Chen C (2013) Fractured-well performance under anomalous diffusion. SPE 165584:237–245

    Google Scholar 

  24. Albinali A, Holy R, Sarak H, Ozkan E (2016) Modeling of 1D anomalous diffusion in fractured nanoporous. Oil Gas Sci Technol 71:56–81

    Article  Google Scholar 

  25. Obembe AD, Al-Yousef HY, Hossain ME, Abu-Khamsin SA (2017) Fractional derivatives and their applications in reservoir engineering problems: a review. J Pet Sci Eng 157:312–327

    Article  Google Scholar 

  26. Das AK (1999) Generalized Darcy’s law with source and heterogeneity effects. J Can Pet Technol 38:32–38

    Article  Google Scholar 

  27. Mikelić A (1994) Mathematical derivation of the Darcy-type law with memory effects, governing transient flow through porous media. Glasnik Matematicki 29(49):1–24

    MathSciNet  MATH  Google Scholar 

  28. Stehfest H (1970) Numerical inversion of Laplace transforms. Commun ACM 13:47–49

    Article  Google Scholar 

  29. Baeumer B, Benson DA, Meerschaert MM, Wheatcraft SW (2000) Subordinated advection-dispersion equation for contaminant transport. Water Resour Res 37:1543–1550

    Article  Google Scholar 

  30. Raghavan R (2012) Fractional diffusion: performance of fractured wells. J Pet Sci Eng 92–93:167–173

    Article  Google Scholar 

  31. Dentz M, Tartakovsky DM (2006) Delay mechanisms of non-Fickian transport in heterogeneous media. Geophys Res Lett 33(16):L16406

    Article  Google Scholar 

  32. Compte A, Metzler R (1997) The generalized Cattaneo equation for the description of anomalous transport processes. J Phys A: Math Gen 30:7277–7289

    Article  MathSciNet  MATH  Google Scholar 

  33. Elias BP, Hajash A (1992) Changes in quartz solubility and porosity due to effective stress: an experimental investigation of pressure solution. Geology 20:451–454

    Article  Google Scholar 

  34. Walder J, Nur A (1984) Porosity reduction and crustal pore pressure development. J Geophys Res 89:11539–11548

    Article  Google Scholar 

  35. Bolshov L, Kondratenko P, Semenov V (2008) Nonclassical transport process in geological media: review of field and laboratory observations and basic physical concepts. Vadose Zone J 7(4):1181–1190

    Article  Google Scholar 

  36. Sokolov IM, Klafter J (2005) From diffusion to anomalous diffusion: a century after Einstein’s Brownian motion. Chaos 15:026103

    Article  MathSciNet  MATH  Google Scholar 

  37. Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  38. Tarasov VE (2010) Continuous medium model for fractal media. Phys Lett A 336:167–174

    Article  MATH  Google Scholar 

  39. Bagley R (2007) On the equivalence of the Riemann–Liouville and the caputo fractional order derivatives in modeling of linear viscoelastic materials. Fracture 10:123–126

    MathSciNet  MATH  Google Scholar 

  40. Benson DA, Meerschaert MM, Revielle J (2013) Fractional calculus in hydrologic modeling: a numerical perspective. Adv Water Resour 51:479–497

    Article  Google Scholar 

  41. Li J, Ostoja-Starzewki M (2011) Micropolar continuum mechanics of fractal media. Int J Eng Sci 49:1302–1310

    Article  MathSciNet  MATH  Google Scholar 

  42. Demmie PN, Ostoja-Starzewki M (2011) Waves in fractal media. J Elast 104:187–204

    Article  MathSciNet  MATH  Google Scholar 

  43. Balankin AS, Espinoza-Elizarraraz B (2012) Map of fluid flow in fractal porous medium into fractal continuum flow. Phys Rev E 85:056314

    Article  Google Scholar 

  44. Balankin AS, Espinoza-Elizarraraz B (2012) Hydrodynamics of fractal continuum flow. Phys Rev E 85:025302

    Article  Google Scholar 

  45. Moreles AM, Peña J, Botello S, Iturriaga R (2013) On modeling flow in fractal media form fractional continuum mechanics and fractal geometry. Transp Porous Med 99:161–174

    Article  MathSciNet  Google Scholar 

  46. Herrera-Hernández EC, Aguilar-Madera CG, Luis DP, Hernández D, Camacho-Velázquez RG (2018) Semi-numerical solution to a fractal telegraphic dual-porosity fluid flow model. Comput Appl Math 37:4342–4356

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the anonymous referees for the detailed reading of this work and their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Aguilar-Madera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Analytical solution in the Laplace domain

Appendix A: Analytical solution in the Laplace domain

The Laplace transforms of (28) is

$$\begin{aligned}{} & {} \frac{1}{r_{D}^{d-1} }\frac{\mathrm{{d}}}{\mathrm{{d}}r_{D} }\left( {\,r_{D}^{\alpha } \frac{\mathrm{{d}}\hat{{p}}_{D} }{\mathrm{{d}}r_{D} }} \right) -\gamma ^{-1}s^{\beta }\,\hat{{p}}_{D} =-\gamma ^{-1}s^{\beta -1}p_{D} \left( 0 \right) \nonumber \\{} & {} \quad +\frac{s^{\beta -1}}{r_{D}^{d-1} }\left[ {{ }_{0}^{RL} I_{t}^{\beta } \frac{\partial }{\partial r_{D} }\left( {\,r_{D}^{\alpha } \frac{\partial p_{D} }{\partial r_{D} }} \right) } \right] _{t=0}. \end{aligned}$$
(37)

The right-hand side in both equations contain the initial conditions which, according to the definition of the dimensionless variables, vanish. Therefore, the model can be written in terms of the modified Bessel equation in the following form:

$$\begin{aligned} r_{D} \frac{\mathrm{{d}}^{2}\hat{{p}}_{D} }{\mathrm{{d}}r_{D}^{2} }+\alpha \frac{\mathrm{{d}}\hat{{p}}_{D} }{\mathrm{{d}}r_{D} }-\Omega ^{2}r^{d-\alpha }\hat{{p}}_{D} =0. \end{aligned}$$
(38)

The general analytical solution to the modified Bessel equation (38) in the Laplace domain is given by [45, 46]

$$\begin{aligned} \hat{{p}}_{D} \left( {r,s} \right) =r^{\frac{1-\alpha }{2}}\left[ {C_{1} \,I_{\nu } \left( {\Psi \,\,r^{1/\theta }} \right) +C_{2} \,K_{\nu } \left( {\Psi \,\,r^{1/\theta }} \right) } \right] . \end{aligned}$$
(39)

where \(\theta =2/\left( {\alpha +1} \right) \), \(\Psi =\theta \left| \Omega \right| \), \(\nu =\theta \left( {1-\alpha } \right) /2\), and \(I_{\nu } \left( \cdot \right) \) and \(K_{\nu } \left( \cdot \right) K_{\nu } \left( \cdot \right) \) are, respectively, the modified Bessel functions of first and second kind of order \(\nu \).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herrera-Hernández, E.C., Aguilar-Madera, C.G., Espinosa-Paredes, G. et al. Modeling single-phase fluid flow in porous media through non-local fractal continuum equation. J Eng Math 138, 8 (2023). https://doi.org/10.1007/s10665-022-10245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-022-10245-4

Keywords

Navigation