Skip to main content
Log in

Fluid inflow from a source on the base of a channel

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A spectral method is detailed to simulate the viscous Boussinesq flow of a plume of heavy fluid emanating from a line source on the bottom of a channel. A small initially semi-circular “bubble” grows for small time, rising up to some height before it starts to flow outwards horizontally. We discuss the results for different values of Reynolds number, flow rate and density differential, considering the viscous and inertial effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mohamed A, Mohamed M (2012) Environmental impacts of seawater desalination: Arabian Gulf Case Study. Int J Environ Sust 1(3):22–37

    Google Scholar 

  2. Forbes LK, Paul RA, Chen MJ, Horsley DE (2015) Kelvin–Helmholtz creeping flow at the interface between two viscous fluids. ANZIAM J 56(4):317–358

    Article  MathSciNet  Google Scholar 

  3. Russell PS, Forbes LK, Hocking GC (2017) The initiation of a planar fluid plume beneath a rigid lid. J Eng Math 106(1):107–121

    Article  MathSciNet  Google Scholar 

  4. Williamson N, Armfield SW, Lin W (2010) Transition behaviour of weak turbulent fountains. J Fluid Mech 655:306–326

    Article  Google Scholar 

  5. Hunt GR, Coffey CJ (2009) Characterising line fountains. J Fluid Mech 623:317–327

    Article  Google Scholar 

  6. Kaye NB, Hunt GR (2006) Weak fountains. J Fluid Mech 558:319–328

    Article  Google Scholar 

  7. van den Bremer TS, Hunt GR (2014) Two-dimensional planar plumes and fountains. J Fluid Mech 750:210–244

    Article  MathSciNet  Google Scholar 

  8. Landrini M, Tyvand PA (2001) Generation of water waves and bores by impulsive bottom flux. J Eng Math 39(1–4):131–170

    Article  MathSciNet  Google Scholar 

  9. Stokes TE, Hocking GC, Forbes LK (2005) Unsteady flow induced by a withdrawal point beneath a free surface. ANZIAM J 47(2):185–202

    Article  MathSciNet  Google Scholar 

  10. Forbes LK (2008) Spectral solution methods for free-surface flow: the Rayleigh–Taylor problem. ANZIAM J 50:549–568

    Article  MathSciNet  Google Scholar 

  11. Lee HG, Kim J (2012) A comparison study of the Boussinesq and the variable density models on buoyancy-driven flows. J Eng Math 75(1):15–27

    Article  MathSciNet  Google Scholar 

  12. Shraida SM (2020) A dynamical study of saline plumes in desalination outfalls, PhD Thesis, Murdoch University, June, 2021

  13. Benjamin T (1968) Gravity currents and related phenomena. J Fluid Mech 31(2):209–248

    Article  Google Scholar 

  14. Yih C, Long R (1980) Stratified flows. American Society of Mechanical Engineers Digital Collection

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graeme C. Hocking.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Shaymaa M. Shraida—On leave from Department of Mathematics, College of Education for Pure Sciences-Ibn, Al- Haitham, University of Baghdad, Baghdad, Iraq.

Appendix: The Boussinesq solution equations

Appendix: The Boussinesq solution equations

This derivation is described in full by [3], but for completeness, we include it here. The vorticity equation (8) in view of (18) and (19) becomes

$$\begin{aligned} \begin{aligned}&\sum _{m=1}^{M}\sum _{n=1}^{N} \bigtriangleup _{mn}^{2}A_{mn}'(t) \sin \left( \frac{m \pi x}{L}\right) \sin \left( \frac{n \pi y}{h}\right) \\&\quad =\left[ u \frac{\partial \omega }{\partial x} + v \frac{\partial \omega }{\partial y}- \frac{\partial \rho }{\partial x} \right] -\frac{1}{Re} \sum _{m=1}^{M} \sum _{n=1}^{N}\bigtriangleup _{mn}^{4} A_{mn}(t) \sin \left( \frac{m \pi x}{L}\right) \sin \left( \frac{n \pi y}{h}\right) . \end{aligned} \end{aligned}$$
(28)

The constant \(\bigtriangleup _{mn}\) is defined in Eq. (18). Multiplying by \(\sin \left( \frac{k \pi x}{L}\right) \sin \left( \frac{l \pi y}{h}\right) \) and integrating over the two-dimensional domain \(-L \le x \le L\), \(0 \le y \le h\), the orthogonality relations then yield

$$\begin{aligned} \begin{aligned} A_{kl}'(t)&=\frac{1}{Re} \Delta _{kl}^{2}A_{kl}(t)-\frac{2}{\Delta _{kl}^{2}Lh}\int _0^{h} \int _{-L}^{L}\left[ u \frac{\partial \omega }{\partial x} + v \frac{\partial \omega }{\partial y}+ \frac{\partial \rho }{\partial x} \right] \sin \left( \frac{k \pi x}{L}\right) \sin \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y, \end{aligned} \end{aligned}$$
(29)

for \(k={1,...,M}\) and \(l={1,...,N}\). The second system of differential equations is obtained by considering the density perturbation function \(\bar{\rho }\). However, we observe that singular behaviour near the source requires the extra factor G(xy) or \(G^*(x,y)\) in the representation (19) for \(\bar{\rho }\), and as a result, the orthogonality of the trigonometric functions no longer produces a decoupled system. Substituting our expression for \(\bar{\rho }\) into equation (6) gives

$$\begin{aligned} G(x,y)\left\{ B_{00}'(t)+\sum _{n=1}^{N}B_{0n}'(t) \cos \left( \frac{n \pi y}{h}\right) +\sum _{m=1}^{M}\sum _{n=1}^{N}B_{mn}'(t) \sin \left( \frac{m \pi x}{L}\right) \sin \left( \frac{n \pi y}{h}\right) \right\} +\left( u \frac{\partial {\bar{\rho }}}{\partial x}+v \frac{\partial \bar{\rho }}{\partial y} \right) =0. \nonumber \\ \end{aligned}$$
(30)

In the absence of the G(xy) term, we could isolate the \(B_{00}'\) coefficient simply by integration. However, this is not the case, but we proceed with this technique regardless to give the first of the coupled differential equations to be

$$\begin{aligned} \begin{aligned} L_{00} B_{00}'(t)+\sum _{n=1}^{N}L_{0n} B_{0n}'(t)+\sum _{m=1}^{M}\sum _{n=1}^{N}L_{mn} B_{mn}'(t)- \int _{0}^{h} \int _{-L}^{L}G(x,y)\left( u \frac{\partial \bar{\rho }}{\partial x}+v \frac{\partial {\bar{\rho }}}{\partial y} \right) \hbox {d}x\,\hbox {d} y, \end{aligned} \end{aligned}$$
(31)

where

$$\begin{aligned}&L_{00}=\int _{0}^{h} \int _{-L}^{L} G(x,y) \hbox {d}x\,\hbox {d}y, \end{aligned}$$
(32)
$$\begin{aligned}&L_{0n}=\int _{0}^{h} \int _{-L}^{L} G(x,y) \cos \left( \frac{n \pi y}{h}\right) \hbox {d}x\, \hbox {d}y, \end{aligned}$$
(33)

and

$$\begin{aligned} \begin{aligned} L_{mn}=\int _{0}^{h} \int _{-L}^{L} G(x,y) \cos \left( \frac{m \pi x}{L}\right) \sin \left( \frac{n \pi y}{h}\right) \hbox {d}x\,\hbox {d}y, \end{aligned} \end{aligned}$$
(34)

and similarly

$$\begin{aligned} \begin{aligned} M_{l00} B_{00}'(t)&+\sum _{n=1}^{N}M_{l0n} B_{0n}'(t) +\sum _{m=1}^{M}\sum _{n=1}^{N}M_{lmn} B_{mn}'(t) \\&- \int _{0}^{h} \int _{-L}^{L}\left( u \frac{\partial \bar{\rho }}{\partial x}+v \frac{\partial {\bar{\rho }}}{\partial y} \right) \cos \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y, \end{aligned} \end{aligned}$$
(35)

for \(l=1,2,\dots ,N\) where

$$\begin{aligned}&M_{l00}=\int _{0}^{h} \int _{-L}^{L} G(x,y) \cos \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y \end{aligned}$$
(36)
$$\begin{aligned}&M_{l0n}=\int _{0}^{h} \int _{-L}^{L} G(x,y)\cos \left( \frac{n \pi y}{h}\right) \cos \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y, \end{aligned}$$
(37)

and

$$\begin{aligned} \begin{aligned} M_{lmn}=\int _{0}^{h} \int _{-L}^{L} G(x,y)\cos \left( \frac{m \pi x}{L}\right) \sin \left( \frac{n \pi y}{h}\right) \cos \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y. \end{aligned} \end{aligned}$$
(38)

The final group of equations is similarly obtained by multiplying the density equation by the basis functions and integrating, so that

$$\begin{aligned} \begin{aligned}&N_{kl00} B_{00}'(t)+\sum _{n=1}^{N}N_{kl0n} B_{0n}'(t) +\sum _{m=1}^{M}\sum _{n=1}^{N}N_{klmn} B_{mn}'(t) \\&= \int _{0}^{h} \int _{-L}^{L}\left( u \frac{\partial \bar{\rho }}{\partial x}+v \frac{\partial {\bar{\rho }}}{\partial y} \right) \cos \left( \frac{k \pi x}{L}\right) \sin \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y, \end{aligned} \end{aligned}$$
(39)

for \( k=1,2,\dots ,M, \ l=1,2,\dots ,N\) and where

$$\begin{aligned}&N_{kl00}=\int _{0}^{h} \int _{-L}^{L} G(x,y) \cos \left( \frac{k \pi x}{L}\right) \sin \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y, \end{aligned}$$
(40)
$$\begin{aligned}&N_{kl0n}=\int _{0}^{h} \int _{-L}^{L} G(x,y) \cos \left( \frac{k \pi x}{L}\right) \cos \left( \frac{n \pi y}{h}\right) \sin \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y, \end{aligned}$$
(41)

and

$$\begin{aligned} \begin{aligned} N_{klmn}=\int _{0}^{h} \int _{-L}^{L} G(x,y) \cos \left( \frac{m \pi x}{L}\right) \cos \left( \frac{k \pi x}{L}\right) \sin \left( \frac{n \pi y}{h}\right) \sin \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y. \end{aligned} \end{aligned}$$
(42)

For convenience, we now give the right-hand sides of each of these expressions their own notation, so that

$$\begin{aligned}&R_{00}=-\int _{0}^{h} \int _{-L}^{L}\left( u \frac{\partial \bar{\rho }}{\partial x}+v \frac{\partial {\bar{\rho }}}{\partial y} \right) \hbox {d}x\,\hbox {d}y, \end{aligned}$$
(43)
$$\begin{aligned}&R_{0l}=-\int _{0}^{h} \int _{-L}^{L}\left( u \frac{\partial \bar{\rho }}{\partial x}+v \frac{\partial {\bar{\rho }}}{\partial y} \right) \cos \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y, \ l=1,2,\dots ,N \end{aligned}$$
(44)

and

$$\begin{aligned} \begin{aligned} R_{kl}=-\int _{0}^{h} \int _{-L}^{L}\left( u \frac{\partial {\bar{\rho }}}{\partial x}+v \frac{\partial {\bar{\rho }}}{\partial y} \right) \cos \left( \frac{k \pi x}{L}\right) \sin \left( \frac{l \pi y}{h}\right) \hbox {d}x\,\hbox {d}y, \end{aligned} \end{aligned}$$
(45)

for \(k=1,2,\dots ,M\), \(l=1,2,\dots ,N\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shraida, S.M., Hocking, G.C. & Forbes, L.K. Fluid inflow from a source on the base of a channel. J Eng Math 132, 13 (2022). https://doi.org/10.1007/s10665-021-10197-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10197-1

Keywords

Navigation