Skip to main content
Log in

Induced-charge electroosmosis, polarization, electrorotation, and traveling-wave electrophoresis of horn toroidal particles

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A theoretical framework is presented for calculating the polarization and induced-charge electrophoretic mobility of a polarizable closed (horn) toroidal micro-particle exposed to a non-uniform axial AC electric forcing. The analysis is based on employing the standard (linearized) ‘weak-field’ electroosmotic model for a symmetric electrolyte. In particular, we discuss the case of traveling-wave excitation and provide analytic expressions for the tori induced-phoretic velocity in the Stokes regime in terms of the frequency and wavelength of the ambient electric field. In addition, we consider the non-linear electroosmotic flow problem about a stationary torus, which is subject to a uniform field, and provide explicit expressions for the resulting Stokes’ stream function driven by the surface Helmholtz–Smoluchowski velocity slip. Finally, we analyze the case of asymmetric (transverse) two-component electrorotation and by calculating the Maxwell electric torque, provide analytic solution for the induced-charge angular velocity of a freely suspended conducting horn torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jones TB (1995) Electro mechanics of particles. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Morgan H, Green NG (2003) AC electro kinetics: colloids and nanoparticles. Research Studies Press, Baldock

    Google Scholar 

  3. Squires TM, Bazant MZ (2004) Induced-charge electro-osmosis. J. Fluid Mech. 509:217–252

    Article  MathSciNet  MATH  Google Scholar 

  4. Henslee EA (2020) Review: dielectrophoresis in cell characterization. Electrophoresis 41:1915–1930

    Article  Google Scholar 

  5. Miloh T (2008) A unified theory for the dipolophoresis of nanoparticles. Phys. Fluids 20:107105

    Article  MATH  Google Scholar 

  6. Flores-Mena JS, Garcia-Sanchez P, Ramos A (2020) Dipolophoresis and travelling-wave dipolophoresis of metal microparticles. Micromachines 11:259

    Article  Google Scholar 

  7. Miloh T, Nagler J (2021) Travelling-wave dipolophoresis: levitation and electrorotation of Janus nanoparticles. Micromachines 12:114

    Article  Google Scholar 

  8. Frankel I, Yossifon G, Miloh T (2012) Dipolophoresis of dielectric spheroids under asymmetric fields. Phys. Fluids 24:012004

    Article  Google Scholar 

  9. Miloh T, Weis-Goldstein B (2015) Electrophoretic rotation and orientation of spheroidal particles in AC fields. Phys. Fluids 27:022003

    Article  Google Scholar 

  10. Weis-Goldstein B, Miloh T (2017) 3D controlled electrorotation of conducting tri-axial ellipsoidal nanoparticles. Phys. Fluid 29:052008

    Article  Google Scholar 

  11. Zehe A, Ramirez A, Staraostenko O (2004) Mathematical modelling of electro-rotation spectra of small particles in liquid solutions. Applications to human erythrocyte aggregates. Braz. J. Med. Bio. Res. 37:173–183

    Article  Google Scholar 

  12. Mesarec L, Gozdz W, Iglic A, Kralji-Iglic V, Virga EG, Kralji S (2019) Normal red blood cell’s shape stabilized by membranes in plane ordering. Sci. Rep. 9:19742

    Article  Google Scholar 

  13. Techaumnal B, Panklang N (2021) Electrochemical analysis of red blood cells under AC electric fields. IEEE Trans. Magn. 10:1109

    Google Scholar 

  14. Krokhmal PA (2002) Exact solution of the displacement boundary-value problem of elasticity for a torus. J. Eng. Math. 44:345–368

    Article  MathSciNet  MATH  Google Scholar 

  15. Krasnitskii S, Trafinov A, Radi E, Sevestianov I (2019) Effect of a rigid toroidal inhomogeneity on the elastic properties of a composite. Math. Mech. Solids 24(4):1129–1146

    Article  MathSciNet  MATH  Google Scholar 

  16. Radi E, Sevestianov I (2016) Toroidal insulting inhomogeneity in an infinite space and related problems. Proc. R. Soc. A. 472:0781

    Article  Google Scholar 

  17. Leshanski AM, Kenneth O (2008) Surface tank treading: Propulsion of Purcell’s toroidal swimmer. Phys. Fluids 20:063104

    Article  MATH  Google Scholar 

  18. Schmeding LC, Lauga E, Montenegro-Johnson TD (2012) Autophoretic flow on a torus. Phys. Rev. Fluids 2:034201

    Article  Google Scholar 

  19. Thaokar RM, Schiessel H, Kulic IM (2007) Hydrodynamics of a rotating torus. Eur. Phys. J. B. 60:325–336

    Article  Google Scholar 

  20. Scharstein RW, Wilson HB (2005) Electrostatic excitation of a conducting toroid: exact solution and the thin-wire approximation. Electrophoresis 25:1–19

    Google Scholar 

  21. Wright EB, Peterson PE (1967) Magnetization of an ideal superconducting torus in transverse field. J. Appl. Phys. 38(2):855–860

    Article  Google Scholar 

  22. Ungphaiboon SL, Attiya D, Gomez d’Ayala G, Sansongsak P, Cellesi F, Tireli N (2010) Materials for microencapsulation: What toroidal (‘doughnuts’) can do better than spherical beads. Soft Matter 6:4070–4083

    Article  Google Scholar 

  23. Moon F, Spencer DE (1961) Field theory handbook. Springer, Berlin

    Book  MATH  Google Scholar 

  24. Pell WH, Payne LE (1960) On Stokes flow about a torus. Mathematica 7:78–92

    MathSciNet  MATH  Google Scholar 

  25. Takaji H (1973) Slow viscous flow due to the motion of a closed torus. J. Phys. Soc. Jpn. 35(4):1225–1227

    Article  Google Scholar 

  26. Dorrepaal JM, Majumdar SR, O’Neill ME, Ranger KL (1976) A closed torus in Stokes flow. Quart. J. Mech. Appl. Math. 29(4):381

    Article  MATH  Google Scholar 

  27. Majumdar SR, O’Neill ME (1979) Asymmetric Stokes flows generated by the motion of a closed torus. J. Appl. Math. Phys. 30:967–982

    MathSciNet  MATH  Google Scholar 

  28. Williams MMR (1987) A closed torus in Stokes flow with slip boundary conditions. Quart. Mech. Appl. Math. 40(2):235–246

    Article  MATH  Google Scholar 

  29. Wakiya S (1971) Slow motion in shear flow of doublet of two spheres in contact. J. Phys. Soc. Jpn. 31:1581–1587

    Article  Google Scholar 

  30. Nir A, Acrivos A (1973) On the creeping flow motion of two arbitrary-sized touching spheres in a linear shear field. J. Fluid Mech. 59:209–223

    Article  MATH  Google Scholar 

  31. Takaji H (1974) Slow rotation of two touching spheres in viscous fluid. J. Phys. Soc. Jpn. 36:875–877

    Article  Google Scholar 

  32. Zabarankin M (2007) Asymmetric three-dimensional Stokes flows about two fuses equal spheres. Proc. R. Soc. A. 463:2249–2329

    MATH  Google Scholar 

  33. Latta GE, Hess GB (1973) Potential flow past a sphere tangent to a plane. Phys. Fluids 16:974–976

    Article  MATH  Google Scholar 

  34. Small RD, Weihs D (1975) Axisymmetric potential flow over two spheres in contact. ASME. J. Appl. Mech. 42:763–765

    Article  Google Scholar 

  35. Morrison FA (1976) Irrotational flow about two touching spheres. ASME. J. Appl. Mech. 43(2):365–366

    Article  MATH  Google Scholar 

  36. Davis AM (1977) High frequency limiting virtual-mass coefficient of heaving half-immersed spheres. J. Fluid Mech. 80(2):305–319

    Article  MathSciNet  MATH  Google Scholar 

  37. Bentwich M, Miloh T (1978) On the exact solution for the two-sphere problem in axisymmetric potential flow. ASME. J. Appl. Mech. 45(3):463–465

    Article  MATH  Google Scholar 

  38. Cox SJ, Cooker MJ (2000) Potential flow past a sphere touching a tangent plane. J. Eng. Math. 38:355–370

    Article  MathSciNet  MATH  Google Scholar 

  39. Pitkonen M (2008) Polarizability of a pair of touching dielectric spheres. J. Appl. Phys. 103:104910

    Article  Google Scholar 

  40. Lanzoni L, Radi E, Sevostianov I (2020) Effect of spherical pores coalescence on the overall conductivity of a material. Mech. Mat. 148:103463

    Article  Google Scholar 

  41. Miloh T (1979) The virtual mass of a closed torus. J. Eng. Math. 13(1):1–6

    Article  MathSciNet  Google Scholar 

  42. Gradshteyn IS, Ryzhik IM (1965) Table of Integrals, Series, and Products. Academic Press Inc., San Diego

    MATH  Google Scholar 

  43. Hobson EW (1965) The Theory of Spherical and Ellipsoidal Harmonics. Chelsea, New York

    MATH  Google Scholar 

  44. Smythe WR (1961) Flow around a sphere in a circular tube. Phys. Fluids 4(4):756–759

    Article  MathSciNet  MATH  Google Scholar 

  45. Miloh T (2008) Dipolophoresis of nanoparticles. Phys. Fluids 20:083303

    MATH  Google Scholar 

  46. Murtsovkin VA (1996) Nonlinear flows near polarized disperse particles. Colloid J. 58:341

    Google Scholar 

  47. Yariv E, Miloh T (2008) Electro-convection about conducting particles. J. Fluid Mech. 595:163

    Article  MathSciNet  MATH  Google Scholar 

  48. Miloh T (2019) AC electrokinetics of polarizable tri-axial ellipsoidal nano-antennas and quantum dot manipulations. Micromachines 10(2):83

    Article  Google Scholar 

  49. Happel J, Brenner H (1983) Low Reynolds Hydrodynamics. Maritinus Nijhoff, The Hague

    MATH  Google Scholar 

  50. Garcia-Sanchez P, Ramos A (2015) Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length. Phys. Rev. E. 92:052313

    Article  Google Scholar 

  51. Miloh T, Nagler J (2021) Travelling-wave dipolophoresis: levitation and electrorotation of Janus nanoparticles. Micromachines 12:114

    Article  Google Scholar 

Download references

Acknowledgements

The partial support of BSF Grant 2018168 is acknowledged. Thanks also to E. Avital from QMUL for his help in preparing Fig. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Touvia Miloh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miloh, T. Induced-charge electroosmosis, polarization, electrorotation, and traveling-wave electrophoresis of horn toroidal particles. J Eng Math 133, 7 (2022). https://doi.org/10.1007/s10665-021-10194-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10665-021-10194-4

Keywords

Navigation